36,961 research outputs found
Parametric finite-element studies on the effect of tool shape in friction stir welding
The success of the Friction Stir Welding (FSW) process, and the weld quality produced, depends significantly on the design of the welding tool. In this paper the effect of variation in various tool geometry parameters on FSW process outcomes, during the plunge stage, were investigated. Specifically the tool shoulder surface angle and the ratio of the shoulder radius to pin radius on tool reaction force, tool torque, heat generation, temperature distribution and size of the weld zone were investigated. The studies were carried out numerically using the finite element method. The welding process used AA2024 aluminium alloy plates with a thickness of 3 mm. It was found that, in plunge stage, the larger the pin radius the higher force and torque the tool experiences and the greater heat generated. It is also found that the shoulder angle has very little effect on energy dissipation as well as little effect on temperature distribution
Filler bar heating due to stepped tiles in the shuttle orbiter thermal protection system
An analytical study was performed to investigate the excessive heating in the tile to tile gaps of the Shuttle Orbiter Thermal Protection System due to stepped tiles. The excessive heating was evidence by visible discoloration and charring of the filler bar and strain isolation pad that is used in the attachment of tiles to the aluminum substrate. Two tile locations on the Shuttle orbiter were considered, one on the lower surface of the fuselage and one on the lower surface of the wing. The gap heating analysis involved the calculation of external and internal gas pressures and temperatures, internal mass flow rates, and the transient thermal response of the thermal protection system. The results of the analysis are presented for the fuselage and wing location for several step heights. The results of a study to determine the effectiveness of a half height ceramic fiber gap filler in preventing hot gas flow in the tile gaps are also presented
Orbiter catalytic/noncatalytic heat transfer as evidenced by heating to contaminated surfaces on STS-2 and STS-3
During that portion of Space Shuttle orbiter entry when significant aerodynamic heat transfer occurs, the flow over the vehicle is in chemical nonequilibrium. The parameter which most significantly influences the level of surface heat transfer in such a flow field is the catalytic efficiency of the surface with respect to the recombination of dissociated oxygen atoms. Significant, and instantaneous, changes were observed in the level of heat transfer at several lower surface centerline locations on STS-2 and STS-3. This phenomenon apparently resulted from a sudden change in the surface catalytic efficiency at these locations due to contamination of the surface by metallic oxides. As a result, data obtained from affected measurements cannot be considered as benchmark data with which to attempt to characterize nonequilibrium heat transfer to the orbiter's lower surface centerline
Scaling of the Kondo zero bias peak in a hole quantum dot at finite temperatures
We have measured the zero bias peak in differential conductance in a hole
quantum dot. We have scaled the experimental data with applied bias and
compared to real time renormalization group calculations of the differential
conductance as a function of source-drain bias in the limit of zero temperature
and at finite temperatures. The experimental data show deviations from the T=0
calculations at low bias, but are in very good agreement with the finite T
calculations. The Kondo temperature T_K extracted from the data using T=0
calculations, and from the peak width at 2/3 maximum, is significantly higher
than that obtained from finite T calculations.Comment: Accepted to Phys. Rev. B (Rapid
The Berry phase of dislocations in graphene and valley conserving decoherence
We demonstrate that dislocations in the graphene lattice give rise to
electron Berry phases equivalent to quantized values {0,1/3,-1/3} in units of
the flux quantum, but with an opposite sign for the two valleys. An elementary
scale consideration of a graphene Aharonov-Bohm ring equipped with valley
filters on both terminals, encircling a dislocation, says that in the regime
where the intervalley mean free path is large compared to the intravalley phase
coherence length, such that the valley quantum numbers can be regarded as
conserved on the relevant scale, the coherent valley-polarized currents
sensitive to the topological phases have to traverse the device many times
before both valleys contribute, and this is not possible at intermediate
temperatures where the latter length becomes of order of the device size, thus
leading to an apparent violation of the basic law of linear transport that
magnetoconductance is even in the applied flux. We discuss this discrepancy in
the Feynman path picture of dephasing, when addressing the transition from
quantum to classical dissipative transport. We also investigate this device in
the scattering matrix formalism, accounting for the effects of decoherence by
the Buttiker dephasing voltage probe type model which conserves the valleys,
where the magnetoconductance remains even in the flux, also when different
decoherence times are allowed for the individual, time reversal connected,
valleys.Comment: 14 pages, 7 figures; revised text, added figure, accepted for
publication by PR
Surface-acoustic-wave driven planar light-emitting device
Electroluminescence emission controlled by means of surface acoustic waves
(SAWs) in planar light-emitting diodes (pLEDs) is demonstrated. Interdigital
transducers for SAW generation were integrated onto pLEDs fabricated following
the scheme which we have recently developed. Current-voltage, light-voltage and
photoluminescence characteristics are presented at cryogenic temperatures. We
argue that this scheme represents a valuable building block for advanced
optoelectronic architectures
Properties of planetary fluids at high pressure and temperature
In order to derive models of the interiors of Uranus, Neptune, Jupiter and Saturn, researchers studied equations of state and electrical conductivities of molecules at high dynamic pressures and temperatures. Results are given for shock temperature measurements of N2 and CH4. Temperature data allowed demonstration of shock induced cooling in the the transition region and the existence of crossing isotherms in P-V space
Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures
We present the results of electrically-detected magnetic resonance (EDMR)
experiments on silicon with ion-implanted phosphorus nanostructures, performed
at 5 K. The devices consist of high-dose implanted metallic leads with a square
gap, into which Phosphorus is implanted at a non-metallic dose corresponding to
10^17 cm^-3. By restricting this secondary implant to a 100 nm x 100 nm region,
the EDMR signal from less than 100 donors is detected. This technique provides
a pathway to the study of single donor spins in semiconductors, which is
relevant to a number of proposals for quantum information processing.Comment: 9 pages, 3 figure
Herwig++ 2.0 Release Note
A new release of the Monte Carlo program Herwig++ (version 2.0) is now
available. This is the first version of the program which can be used for
hadron-hadron physics and includes the full simulation of both initial- and
final-state QCD radiation.Comment: Source code and additional information available at
http://hepforge.cedar.ac.uk/herwig
- …
