4,709 research outputs found

    The Interaction of Retention, Recruitment, and Density-Dependent Mortality in the Spatial Placement of Marine Reserves

    Get PDF
    Population density can affect rates of mortality and individual growth. We measured these for the non-exploited bluehead wrasse, Thalassoma bifasciatum, at three sites around St. Croix, US Virgin Islands. Previous work demonstrated that differences in the degree of larval retention in these sites results in very large differences in recruitment intensity. Post-settlement mortality differed among sites and was positively related to recruitment density. Post-settlement growth differences were small. Because of strong mortality effects early in life, adult densities and size/age distributions differed among sites and did not reflect differences in recruitment rate. The site with the highest retention and recruitment (Butler Bay) had many small fish, while the two other sites with lower recruitment rates (Jacks Bay and Green Cay) had proportionally more large fish. These differences resulted in large differences in egg production. Per capita production was highest at the lowest density site (Green Cay). Total egg production at Green Cay was 75% that at Butler Bay, despite only having half the population size, and the highest overall production was at Jacks Bay, with low retention and moderate recruitment. In terms of marine reserve location, sites predicted to have high retention and recruitment may not always be the sites of highest egg production due to density-dependent processes, and it is important to consider the relative values of self-recruitment and larval export in reserve design

    Spatial and Temporal Variation in the Natal Otolith Chemistry of a Hawaiian Reef Fish: Prospects for Measuring Population Connectivity

    Get PDF
    One of the most compelling unanswered questions in marine ecology is the extent to which local populations are connected via larval exchange. Recent work has suggested that variation in the chemistry of otoliths (earstones) of fishes may function as a natural tag, potentially allowing investigators to determine sources of individual larvae and estimate larval connectivity. We analyzed the spatial and temporal variation in natal otolith chemistry of a benthic-spawning reef fish from the Hawaiian Islands. We found no consistent chemical variation at the largest scale (\u3e100 km, among islands), but found significant variation at moderate scales (sites within islands, tens of kilometres) and small scales (clutches within sites), and chemistry of otoliths was not stable between years. These results imply that we may be able to use otolith chemistry to track larval dispersal only if the scales of dispersal match those of variation in natal otolith chemistry, and that separate natal otolith collections may be needed to track different cohorts of larvae. Finally, we found that elemental composition of recruit cores often did not match that of natal otoliths, suggesting that additional methodological development is required before we can effectively apply methods in otolith chemistry to the study of larval dispersal

    The weaker sex: Male lingcod (Ophiodon elongatus) with blue color polymorphism are more burdened by parasites than are other sex–color combinations

    Get PDF
    The unusual blue color polymorphism of lingcod (Ophiodon elongatus) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host–parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why blueness is associated with elevated parasite burdens in males but not in females. What remains to be determined is whether parasites induce physiological damage that produces blueness or if both blue coloration and parasite burden are driven by some unmeasured variable, such as starvation. Although our study cannot discriminate between these possibilities, our data suggest that the immune system could be involved in the blue color polymorphism–an exciting jumping-off point for future research to definitively identify the cause of lingcod blueness and a hint that immunocompetence and parasitism may play a role in lingcod population dynamics

    Integrated multi-trophic aquaculture mitigates the effects of ocean acidification: Seaweeds raise system pH and improve growth of juvenile abalone

    Get PDF
    Integrated multi-trophic aquaculture (IMTA) has the potential to enhance growth, reduce nutrient loads, and mitigate environmental conditions compared to traditional single-species culture techniques. The goal of this project was to develop a land-based system for the integrated culture of seaweeds and shellfish, to test the efficacy of integrated versus non-integrated designs, and to assess the potential for IMTA to mitigate the effects of climate change from ocean acidification on shellfish growth and physiology. We utilized the red abalone (Haliotis rufescens) and the red seaweed dulse (Devaleraea mollis) as our study species and designed integrated tanks at three different recirculation rates (0%, 30%, and 65% recirculation per hour) to test how an integrated design would affect growth rates of the abalone and seaweeds, modify nutrient levels, and change water chemistry. We specifically hypothesized that IMTA designs would raise seawater pH to benefit calcifying species. Our results indicated that juvenile abalone grew significantly faster in weight (22% increase) and shell area (11% increase) in 6 months in tanks with the highest recirculation rates (65%). The 65% recirculation treatment also exhibited a significant increase in mean seawater pH (0.2 pH units higher) due to the biological activity of the seaweed in the connected tanks. We found a significant positive relationship between the mean pH of seawater in the tanks and juvenile abalone growth rates across all treatments. There were no significant differences in the growth of dulse among treatments, but dulse growth did vary seasonally. Seawater phosphate and nitrate concentrations were depleted in the highest recirculation rate treatment, but ammonium concentrations were elevated, likely due to the abalone effluent. Overall, our results indicate that there are benefits to IMTA culture of seaweeds and abalone in terms of improving growth in land-based systems, which will reduce the time to market and buffer commercial abalone operations against the effects of ocean acidification during vulnerable early life stages

    Mental practice with motor imagery in stroke recovery: Randomized controlled trial of efficacy

    Get PDF
    This randomized controlled trial evaluated the therapeutic benefit of mental practice with motor imagery in stroke patients with persistent upper limb motor weakness. There is evidence to suggest that mental rehearsal of movement can produce effects normally attributed to practising the actual movements. Imagining hand movements could stimulate restitution and redistribution of brain activity, which accompanies recovery of hand function, thus resulting in a reduced motor deficit. Current efficacy evidence for mental practice with motor imagery in stroke is insufficient due to methodological limitations. This randomized controlled sequential cohort study included 121 stroke patients with a residual upper limb weakness within 6 months following stroke (on average <3 months post-stroke). Randomization was performed using an automated statistical minimizing procedure. The primary outcome measure was a blinded rating on the Action Research Arm test. The study analysed the outcome of 39 patients involved in 4 weeks of mental rehearsal of upper limb movements during 45-min supervised sessions three times a week and structured independent sessions twice a week, compared to 31 patients who performed equally intensive non-motor mental rehearsal, and 32 patients receiving normal care without additional training. No differences between the treatment groups were found at baseline or outcome on the Action Research Arm Test (ANCOVA statistical P = 0.77, and effect size partial η2 = 0.005) or any of the secondary outcome measures. Results suggest that mental practice with motor imagery does not enhance motor recovery in patients early post-stroke. In light of the evidence, it remains to be seen whether mental practice with motor imagery is a valid rehabilitation technique in its own right

    Species-Specific Responses of Juvenile Rockfish to Elevated pCO2: From Behavior to Genomics

    Get PDF
    In the California Current ecosystem, global climate change is predicted to trigger large-scale changes in ocean chemistry within this century. Ocean acidification—which occurs when increased levels of atmospheric CO2 dissolve into the ocean—is one of the biggest potential threats to marine life. In a coastal upwelling system, we compared the effects of chronic exposure to low pH (elevated pCO2) at four treatment levels (i.e., pCO2 = ambient [500], moderate [750], high [1900], and extreme [2800 μatm]) on behavior, physiology, and patterns of gene expression in white muscle tissue of juvenile rockfish (genus Sebastes), integrating responses from the transcriptome to the whole organism level. Experiments were conducted simultaneously on two closely related species that both inhabit kelp forests, yet differ in early life history traits, to compare high-CO2 tolerance among species. Our findings indicate that these congeners express different sensitivities to elevated CO2 levels. Copper rockfish (S. caurinus) exhibited changes in behavioral lateralization, reduced critical swimming speed, depressed aerobic scope, changes in metabolic enzyme activity, and increases in the expression of transcription factors and regulatory genes at high pCO2 exposure. Blue rockfish (S. mystinus), in contrast, showed no significant changes in behavior, swimming physiology, or aerobic capacity, but did exhibit significant changes in the expression of muscle structural genes as a function of pCO2, indicating acclimatization potential. The capacity of long-lived, late to mature, commercially important fish to acclimatize and adapt to changing ocean chemistry over the next 50–100 years is likely dependent on species-specific physiological tolerances
    corecore