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Spatial and temporal variation in the natal otolith
chemistry of a Hawaiian reef fish: prospects for
measuring population connectivity

Benjamin I. Ruttenberg, Scott L. Hamilton, and Robert R. Warner

Abstract: One of the most compelling unanswered questions in marine ecology is the extent to which local populations
are connected via larval exchange. Recent work has suggested that variation in the chemistry of otoliths (earstones) of
fishes may function as a natural tag, potentially allowing investigators to determine sources of individual larvae and esti-
mate larval connectivity. We analyzed the spatial and temporal variation in natal otolith chemistry of a benthic-spawning
reef fish from the Hawaiian Islands. We found no consistent chemical variation at the largest scale (>100 km, among is-
lands), but found significant variation at moderate scales (sites within islands, tens of kilometres) and small scales
(clutches within sites), and chemistry of otoliths was not stable between years. These results imply that we may be able to
use otolith chemistry to track larval dispersal only if the scales of dispersal match those of variation in natal otolith chem-
istry, and that separate natal otolith collections may be needed to track different cohorts of larvae. Finally, we found that
elemental composition of recruit cores often did not match that of natal otoliths, suggesting that additional methodological
development is required before we can effectively apply methods in otolith chemistry to the study of larval dispersal.

Résumé : Une des questions les plus intrigantes de I’écologie marine encore sans réponse est de savoir dans quelle mesure
les populations locales sont reli¢es entre elles par des échanges de larves. Des travaux récents indiquent que les variations
dans la chimie des otolithes des poissons peuvent servir d’étiquettes naturelles qui pourraient permettre aux chercheurs
d’identifier ’origine de larves individuelles et d’estimer la connectivité larvaire. Nous analysons la variation spatiale et
temporelle de la chimie des otolithes a la naissance d’un poisson de récif a reproduction benthique des iles Hawaii. Nous
ne trouvons aucune variation chimique uniforme a I’échelle la plus grande (> 100 km, entre les iles), mais il y en a une
significative aux échelles moyennes (sites au sein des 1iles, dizaines de km) et petites (regroupements au sein des sites); la
chimie des otolithes n’est pas stable d’une année a 1’autre. Ces résultats ont comme conséquence qu’il sera possible d’uti-
liser la chimie des otolithes pour retracer la dispersion des larves, seulement si 1’échelle de cette dispersion correspond a
celle de la variation de la chimie des otolithes a la naissance; de plus, des collections différentes d’otolithes a la naissance
seront peut-&tre nécessaires pour suivre différentes cohortes de larves. Enfin, nous trouvons que la composition en élé-
ments des noyaux des recrues ne correspondent souvent pas a celle des otolithes a la naissance; cela laisse croire qu’il fau-
dra une évolution supplémentaire de la méthodologie avant qu’on puisse efficacement utiliser les méthodes de chimie des
otolithes pour étudier la dispersion des larves.

[Traduit par la Rédaction]

spite these difficulties, measuring rates of larval exchange is
necessary to further our understanding of population dynam-
ics in many marine systems and to implement spatial man-

How connected are marine populations? This is one of the
fundamental unanswered questions in marine ecology. Many
marine organisms have a relatively long benthic adult stage
with low mobility and a relatively short pelagic larval phase
with high dispersal potential. For species with this life his-
tory, dispersal among populations occurs almost exclusively
in the larval stage, but rates of larval connectivity among lo-
cal populations remain unknown for all species with a pela-
gic larval stage in part because larvae are small, difficult to
track, and experience extremely high rates of mortality. De-

agement of marine resources, such as the location of marine
reserves (Gaines and Roughgarden 1985; Caley et al. 1996;
Shanks et al. 2003).

Over the last decade or so, investigators have employed a
variety of different techniques to address questions of larval
exchange and population connectivity, including genetics
(Barber et al. 2002; Taylor and Hellberg 2003), mark and
recapture (Jones et al. 1999, 2005), oceanographic modeling
(Cowen et al. 2000, 2006; James et al. 2002), and otolith
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chemistry (Warner et al. 2005; Ruttenberg and Warner
2006), with variable success. Otolith chemistry has gener-
ated a great deal of interest and is often considered to have
the most potential to measure larval exchange empirically
(Campana and Thorrold 2001). Otoliths are accretions of
calcium carbonate and protein in the inner ears of bony
fishes used for hearing and balance. They often form growth
bands that can be used to estimate the age of the fish (Victor
1986; Secor et al. 1995), and incorporate trace metals into
the crystalline matrix at rates that may be related to environ-
mental conditions (e.g., Campana 1999). Since otoliths are
metabolically inert, these properties can be used to recon-
struct the conditions a fish experienced at a given time (see
Campana and Thorrold 2001 for a review of the properties
of otoliths).

To use otolith chemistry to track larval dispersal, two
pieces of information are required. First, a reference collec-
tion of material (e.g., otoliths) that represents the chemical
composition of pre-pelagic, natal otoliths from potential
source sites is needed. Such a collection would provide data
on the chemistry of otoliths from these source sites before
dispersal begins in the pelagic larval phase, thereby allowing
investigators to generate an atlas of natal otolith chemistry.
Second, one must be able to measure the chemistry of the
cores of otoliths of newly settled recruits; the core is the
part of the otolith that contains material deposited at the na-
tal site. Ideally, data from the core of a recruit can be com-
pared with the reference collection (i.e., the atlas) to
determine the site where that recruit was produced.

While this methodology seems straightforward, obtaining
the requisite data is complicated. Recent studies have shown
that the relationship between environmental factors and oto-
lith chemistry is much more complex than was once be-
lieved. Because temperature (see Elsdon and Gillanders
2003a and references therein) and aquatic elemental concen-
tration may have effects on otolith elemental concentration
(e.g., Bath et al. 2000; Elsdon and Gillanders 2003b;
De Vries et al. 2005), variation in environmental conditions
should lead to some variation in otolith chemistry, even if
those relationships are not predictable a priori (Campana
1999; Campana and Thorrold 2001). Additional evidence
suggests that the chemistry of the otolith core, representing
the natal portion of the otolith, is fundamentally different
from that of other parts of the otolith (Brophy et al. 2004;
Ruttenberg et al. 2005), and the chemical composition of na-
tal otoliths does not appear to reflect the chemistry of water
samples taken at the time of collection (Warner et al. 2005).
Other recent work has found evidence for strong maternal
effects on natal otolith chemical signatures (Thorrold et al.
2006). The collective implication of these findings is that it
may be impossible to use proxies, such as water samples or
otolith edges from resident adults, to generate the atlas of
chemical signatures from sites of interest. Instead, research-
ers will need to have collections of natal otoliths from the
potential source sites of interest.

Even with the caveat that natal otoliths themselves are
likely necessary to generate a reliable atlas of chemical sig-
natures, additional complications remain. Obtaining suffi-
cient natal otoliths from a variety of potential source sites
can be logistically challenging. Although it is easier to ob-
tain otoliths from species that brood fertilized eggs benthi-

cally or internally rather than those that spawn pelagically,
it is often difficult to find brooding individuals or nests in
sufficient numbers, and few studies have attempted to study
natal otoliths (but see Brophy et al. 2003; Warner et al.
2005; Ruttenberg and Warner 2006). It is also unknown
how these natal signatures vary over different spatial and
temporal scales. Significant temporal variation in natal oto-
lith chemistry would require a new set of collections for
each cohort of dispersing larvae, whereas temporal stability
may allow investigators to track multiple cohorts with a sin-
gle collection of natal otoliths. However, the few studies
that have examined temporal variation in the chemical com-
position of otoliths of fully marine species have yielded
mixed results (e.g., Campana et al. 2000; Rooker et al.
2001; Gillanders 2002).

The scale of chemical variation of the natal signatures
must also match the dispersal scale of the organism, and
ideally collections should span a variety of scales, including
those both greater than and less than the expected dispersal
distance of the species. If natal chemical variation occurs
over much larger or smaller scales than the dispersal poten-
tial of the species, it will provide no useful information for
tracking dispersal. Many studies have found that otolith
chemistry of marine species varies over large scales (Cam-
pana et al. 2000; Rooker et al. 2001; Ashford et al. 2005),
but few have examined smaller scales (Chittaro et al. 2005;
Brown 2006) and even fewer have examined scales of varia-
tion in natal otolith chemistry. The levels of spatial and tem-
poral variation will strongly affect the frequency of
sampling required, in both space and time. Unfortunately,
levels of spatial and temporal variation are impossible to es-
timate a priori, and only a handful of studies have examined
spatial or temporal variation in the chemical signatures of
natal otoliths or statoliths, analogous structures in some mol-
lusks (Warner et al. 2005; Zacherl 2005; Ruttenberg and
Warner 2006).

In this study, we present data on chemical signatures of
natal otoliths and cores of recruit otoliths from a common
reef fish in the Hawaiian Islands. Our goals were threefold:
(1) to examine spatial patterns in natal otolith chemistry
across multiple spatial scales within years; (2) to examine
annual variation at the same sites; and (3) to compare signa-
tures from cores of recruit otoliths with those of natal oto-
liths. We found significant variation in natal otolith
chemistry among clutches and some variation among sites,
but no consistent variation among islands. Natal otolith sig-
natures also differed among years and differed from signa-
tures of cores of recruit otoliths. Our findings suggest that
otolith chemistry may be usable for tracking larval dispersal
only when the scales of dispersal match those of the varia-
tion in otolith chemical signatures and that caution is re-
quired when applying these methods to the study of larval
dispersal.

Materials and methods

Study system and study species

We elected to use the main Hawaiian Islands as a study
system because islands throughout the archipelago vary in
rainfall, volcanism, land use patterns, and urbanization.
Windward (eastern) shores of most islands tend to be wetter,



Fig. 1. Map of the Hawaiian Islands showing collection sites. Black circles show collection sites for 2004 and gray triangles show collection
sites for 2003. Only sites for which we had at least three clutches in 2003 or 2004 are shown. HLU is the arbitrary focal site on Hawaii.
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with more runoff, than leeward shores, while western islands
are older and therefore have more developed and more
weathered soils (Fig. 1). These differences may influence
the chemistry of nearshore waters. In addition, urbanized
watersheds in Hawaii have greatly elevated levels of certain
trace elements (e.g., Pb) compared with undeveloped areas,
while nearshore waters adjacent to agricultural areas are en-
riched in other elements (De Carlo and Spencer 1997).
Some of these chemical differences are reflected in biogenic
carbonates, including fish otoliths and coral skeletons
(Spencer 1997; Spencer et al. 2000).

We used the blackspot sergeant, Abudefduf sordidus, as
our study species because they are common on shallow reefs
throughout the islands, settle conspicuously to tide pools
where they spend the first few months after settlement, and
lay and guard benthic eggs on rocky surfaces in the shallow
subtidal zone (usually 2—-5 m depth). Otoliths develop a few
days before hatching. These traits greatly facilitate the col-
lection of eggs (with their natal otoliths) and recruits.

We made collections during 4- to 5-week sampling trips
during summer 2003 and summer 2004. In 2003, we visited
the Island of Hawaii, Maui, Kauai, and Oahu, from 13 Au-
gust to 9 September. In 2004, we visited Oahu, Kauai, Maui,
Molokai, Hawaii, and Oahu, from 14 July to 19 August. On
most islands, we collected eggs opportunistically from the
shallow subtidal zone along semi-exposed rocky shores
from sites where nesting animals were present, and we at-
tempted to spread study sites as evenly as possible around
the islands (see Fig. 1). We generally searched an area for
approximately 200 m along the shore at each site; often no
nests were found. Eggs from a given clutch were collected
together and stored together. We visited many sites where
no nests were present; for example, conditions were rough
and access was difficult on the windward sides of most is-

lands, and we found no ripe nests at any of the sites we
could access on the windward side of any island. To evalu-
ate the effects of scale on natal otolith chemistry explicitly,
we sought to utilize a hierarchical sampling design along the
west shore of Hawaii, where A. sordidus was most abundant.
We chose a focal site arbitrarily, and attempted to sample 6,
12, 25, and 50 km north and south of this point, but we were
able to collect sufficient clutches from only some of these
sites. From all sites on all islands, we collected a total of 44
clutches in 2003 and 124 in 2004 that yielded otoliths. Us-
ing hand nets, we collected recruits opportunistically in
2004 from tide pools from the same sites where we col-
lected eggs. We analyzed a total of 40 recruits that were
smaller than 15 mm standard length and likely less than a
few weeks old (Table 1). However, since collections of
eggs and recruits were made simultaneously at many sites,
recruits were likely spawned at least a few weeks before we
made collections of eggs. All samples of eggs and recruits
were stored in 95% ethanol immediately after collection.

Otolith preparation and analysis

To prepare otoliths for analyses, we generally followed the
methods of Warner et al. (2005), Zacherl (2005), and Rutten-
berg and Warner (2006). We extracted natal otoliths by clutch
by digesting the organic matter in 15% semiconductor-grade
H,0, buffered with 0.05 N Suprapure NaOH (hereafter, “buf-
fered H,O,”) for 30 min on low heat. We then transferred the
otoliths to a clean beaker with ~10 mL of fresh buffered H,O,
for an additional 5 min on low heat to remove any organic
residues from the initial processing step. Next, we transferred
the otoliths through four sequential rinsing steps using ultra-
pure water (N-pure, resistivity > 18.1 MQ-cm), each in a sep-
arate clean beaker. Otoliths were then pipetted onto a clean,
acid-washed 20 mm x 20 mm plastic slide. When the excess



Table 1. Summary of number of collections of
clutches and recruits analyzed, by island.

Clutches Recruits
Island 2003 2004 2004
Hawaii 19 49 12
Maui 7 23 7
Oahu 11 25 12
Kauai 7 22 5
Molokai NA 5 4

Note: NA, not applicable.

water evaporated, we mounted otoliths using double-sided
Scotch tape. We performed all extractions in a clean lab with
HEPA-filter class 100 laminar flow hoods, and all glassware
was acid-washed prior to use.

We followed procedures outlined in Ruttenberg et al.
(2005) and Ruttenberg and Warner (2006) to prepare recruit
otoliths. From each recruit, we mounted one sagittal otolith
sulcus side up on a clean, acid-washed 20 mm x 20 mm
slide in low-viscosity resin (Buehler Epo-Thin epoxy resin).
Otoliths were polished to between 5 um and 15 pum from the
core using a lapping wheel with 9 pm and 3 pm 3M dia-
mond polishing film. After polishing, otoliths were rinsed in
N-pure, soaked in buffered H,O, in acid-leached trays for
1 h, and soaked and rinsed an additional five times with N-
pure. Samples were then dried in class 100 laminar flow
hoods and stored in covered acid-washed plastic trays until
analysis.

We analyzed all samples with a Finnegan MAT Element
2-sector field inductively coupled plasma mass spectrometer
(ICPMS) using a VG-UV microprobe Nd:YAG 266 um la-
ser ablation system, with the laser pulsed at 3 Hz (see Rut-
tenberg et al. 2005 and Warner et al. 2005 for more details).
We report each analyte as a ratio to Ca, corrected for mass
bias using calibration standards with known analyte to Ca
ratios (Ruttenberg et al. 2005; Warner et al. 2005). We
bracketed every four samples with calibration standards and
ran blanks before each sample. Limits of detection were cal-
culated as 3 SD of blanks for a given block. Samples were
randomized across and within blocks prior to analysis.

We analyzed natal otoliths by clutch, using 12 otoliths in
low resolution (resolving power R = 300, hereafter referred
to as LR) for the elements 2*Mg (with a correction to ac-
count for 48Ca?* interference), 48Ca, 86Sr, 138Ba, and 298Pb,
and 12 otoliths in medium resolution (R = 3000, hereafter
referred to as MR) for 48Ca, 5Mn, 3°Fe, and °0Zn. Natal oto-
liths were completely consumed during analysis because of
their small size (~30 pm in diameter, approximately equal
to the laser spot size). We ablated tape blanks with each
sample to ensure that the tape did not contaminate samples.
For recruit otoliths, previous work has found that Mn/Ca ra-
tios associated with the core are elevated and that elevated
Mn/Ca ratios can be used as a proxy to identify the core
(Brophy et al. 2004; Ruttenberg et al. 2005). To isolate ma-
terial associated with the core only, we ablated a series of
small, discrete pits using eight laser pulses in a vertical
transect over the region of the otolith that was visually de-
termined to be the core, pre-ablating the area over the core
with two laser pulses to remove any surface contamination.
After sample analysis, we identified the pit that contained

the core using a spike in Mn/Ca ratio as a proxy (Ruttenberg
et al. 2005). Since levels of Mn are reliably quantifiable
only in medium resolution (owing to gas interferences with

5Mn in LR), we collected all data for elements (Mg, Ca,
Mn, Fe, Zn, Sr, Ba, Pb) for recruit cores using MR. We ex-
cluded Pb, Fe, and Zn from analyses of recruit cores be-
cause levels of these three elements were often below
detection limits in recruit cores. We analyzed solid glass
standard material from the National Institute of Standards
and Technology (NIST 612) along with samples to maintain
instrument precision (see Table Al in Appendix A for these
values).

Data analyses

The small amount of material associated with natal oto-
liths occasionally resulted in low signal stability and high
percent relative standard deviation (%RSD) of elemental ra-
tios for a given otolith. Because the reliability of a given
measurement decreases with increasing %RSD, we applied
a filter that eliminated data points with high %RSD (Rutten-
berg and Warner 2006). Because some contamination of na-
tal otoliths is possible during sample preparation, we also
filtered data points whose absolute values exceeded a pre-
scribed maximum value for a given element, usually ~2
times greater than the maximum value observed in cores of
recruits (using larger or smaller cutoff values did not change
the qualitative results; see Table A2 in Appendix A for cut-
off %RSD values and maximum values). This filter elimi-
nated less than 1% of the data for Mn and Sr, 6% of the
data for Ba, and 9% of the data for Pb, but eliminated over
30% of the data for Mg, Fe, and Zn. Since these three ele-
ments (Mg, Fe, and Zn) appeared to be much more suscepti-
ble to contamination, we excluded them from multivariate
analyses and show their results for comparison only (see Re-
sults). Finally, we excluded values that fell below detection
limits.

To examine broad spatial patterns in the chemistry of na-
tal otoliths within each year, we used nested analyses of var-
iance (ANOVAs), with island as a fixed factor and sites
within islands and clutches within sites as random factors.
We used nested multivariate analyses of variance (MAN-
OVAs) with the same model design to examine these pat-
terns for multi-elemental signatures. We included only those
sites for which we had three or more clutches. We examined
inter-annual patterns in natal otolith chemistry for a subset
of sites for which we had at least three clutches in both
years, using a model that included year, site, clutch(year,
site), and the year X site interaction.

Finally, we used discriminant function analyses (DFAs) to
examine spatial patterns of multivariate chemical signature
variation of natal otoliths in multivariate space. Because all
otoliths from a given clutch were prepared together and run
together, data from individual otoliths may not be truly inde-
pendent. Therefore, we use clutch means for all DFAs, such
that each point in a plot represents a single clutch. We used
a randomization procedure that iteratively randomizes the
grouping variable with respect to the response variables to
determine whether the jackknife (i.e., leave one out) reclas-
sification success rate was significantly different from ran-
dom (White and Ruttenberg 2007).

To determine whether the recruit cores resemble the natal



otoliths from which they arose, we used the natal otolith
data from 2004 as a training data set for the DFA to classify
cores of recruits collected in 2004. All data were log, square
root, or double square root transformed when necessary to
improve normality (Appendix A, Table A2), all analyses
were conducted on transformed data, and all p values were
corrected for multiple comparisons using the sequential
Bonferroni procedure (Rice 1989). We used JMP 5.1 and
SAS 8.0 (SAS Institute Inc., Cary, North Carolina), SPSS
11.0 (SPSS Inc., Chicago, Illinois), and MATLAB 5.1 (The
MathWorks Inc., Natick, Massachusetts) for statistical anal-
yses.

Results

Spatial and temporal patterns in natal otoliths

To evaluate within-year spatial patterns across multiple
scales, we used univariate nested ANOVA, with island as a
fixed factor and site(island) and clutch(site, island) as ran-
dom factors. We found significant among-clutch variation
for all elements in both years, with the exception of Sr in
2003. No element showed significant site-level variation in
either year except Ba in 2004, and no element varied signif-
icantly among islands in either year (Fig. 2 and Table 2).
Multivariate analyses revealed qualitatively similar patterns.
A MANOVA using the same nesting as the univariate tests
found significant clutch-level variation for both years, sig-
nificant site-level variation in 2004 but not 2003, and no sig-
nificant variation at the island level for either year (Table 3).
Corroborating the results of the MANOVAs, DFAs revealed
that natal otoliths had little power to classify clutches to is-
land of origin in either year (jackknife reclassification suc-
cess: 2004, 29.5%; 2003, 22.7%; Fig. 3a), and neither of
these reclassification success rates was significantly different
from random.

When we examine patterns within islands, some spatial
structure emerges. In 2004, DFA successfully reclassified
26.9% of the samples to sites on the Island of Hawaii, which
span over 100 km (Fig. 3b). However, when using only
those sites within 25 km of the focal site, DFA successfully
reclassified 71.4% of the samples, a rate significantly differ-
ent from random (Fig. 3¢). Samples within Maui and Kauai
were reclassified to sites at low, non-significant rates (46.7%
and 37.5% respectively; Figs. 3d, 3f), while reclassification
for sites on Oahu was significantly better than random
(84.2%; Fig. 3e). In 2003, only Hawaii and Oahu had suffi-
cient sample sizes to analyze within-island patterns. Reclas-
sification success rates were 20% for Hawaii and 85.7% for
Oahu, neither of which was significantly different from ran-
dom (likely a consequence of small sample size for Oahu).

To determine the temporal stability of natal otolith chem-
ical signatures, we compared natal otoliths from sites for
which we had at least three clutches in both 2003 and 2004.
Univariate analyses found no significant differences between
years, among sites, or for their interaction for any of the
four elements for which we had reliable data (Mn, Sr, Ba,
Pb; Fig. 4). A MANOVA also found no differences between
years (Table 3) but found significant variation among sites
and among clutches, and a significant site by year interac-
tion. However, when we used the 2004 data from Hawaii
and Oahu as training data sets to classify the 2003 samples

Fig. 2. Means of natal otolith chemistry, by element, island, and
year. Black bars indicate 2003 data; gray bars are for 2004. Error
bars are +1 standard error (SE).
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from those islands, the DFAs performed poorly (33% and
14% of 2003 samples correctly reclassified to site using
2004 data on Hawaii and Oahu, respectively).

Cores of recruit otoliths

To use otolith chemistry to track larval dispersal, chemis-
try of recruit cores should match that of natal otoliths, as-
suming that recruits are not originating from an unsampled
area with distinctive otolith chemistry. Because values for
Pb, Fe, and Zn were consistently below detection limits for
recruit cores (see Materials and methods), we were able to
compare natal otoliths and recruit cores only for Mg, Mn,
Sr, and Ba. For Mg, Sr, and Ba, concentrations in natal oto-
liths were significantly greater than those in recruit cores
(p < 0.001; Fig. 5). However, levels of Mn were marginally
higher in recruit cores than in natal otoliths (p = 0.06;
Fig. 5).

Although there appears to be little usable variation in na-
tal otolith signatures among islands, there is usable variation
within some islands. Therefore, it is still worthwhile to see
how well the recruit cores match the natal otolith signatures
in multivariate space for the entire archipelago (classifying
to island), and within select sites on Hawaii and Oahu (clas-
sifying to site). Some of the recruits fall into the DFA space



Table 2. Univariate analysis of variance (ANOVA) results for natal otoliths.

2003 2004
Element Source df MS F %VC  df MS F 9%V C
Mg Island 2 146 22.42 3 5.29 2.66
Site(Island) 4 0.09 0.61 0 10 2.86 1.31 4.6
Clutch(Site, Island) 5 0.27 3.16 16.7 51 2.68 19.70%%* 624
Error 100 0.09 83.3 604 0.14 33.0
Mn Island 2 0.81 0.13 3 0.79 0.13
Site(Island) 4 5.36 1.05 0.8 10 6.20 0.82 0
Clutch(Site, Island) 9 5.45 6.86%**% 304 52 8.08 7.27%*FF 331
Error 204 0.79 68.8 745 1.11 66.9
Fe Island 2 29.13 1.27 3 2057 0.34
Site(Island) 4 19.76 0.33 2.8 10 66.01 1.48 6.0
Clutch(Site, Island) 9 60.28 11.88*** 29,1 50 54.76 10.75%**% 487
Error 121 5.07 68.0 542 5.09 453
Zn Island 2 247.56 . 3 38.01 0.79
Site(Island) 4 3.32 0.14 0 10  53.27 1.14 2.0
Clutch(Site, Island) 7 26.03 3.61%* 54.9 49  63.25 11.50%%% 542
Error 122 7.22 45.1 494 5.50 43.8
Sr Island 2 0.01 0.07 3 1.04 0.94
Site(Island) 4 0.16 0.57 0 10 1.13 1.57 3.2
Clutch(Site, Island) 9 0.29 1.97 5.0 52 0.75 4.42%**%  20.0
Error 234 0.15 95.0 813 0.17 76.8
Ba Island 2 12.55 1.68 3 2.44 0.26
Site(Island) 4 6.12 1.53 14.8 10 9.62 3.20% 24.6
Clutch(Site, Island) 9 429  36.36%F*  60.5 52 3.07 22.92%*% 4773
Error 228 0.12 24.8 803 0.13 0.26 28.0
Pb Island 2 5.50 2.48 3 3.34 0.61
Site(Island) 4 1.73 0.73 0 10 5.68 2.59 15.0
Clutch(Site, Island) 9 2.68 6.67**% 325 52 2.41 10.33#** 394
Error 203 0.40 67.5 662 0.23 45.6

Note: For all analyses, Island was a fixed factor, and Site(Island) and Clutch(Site, Island) were random factors. %VC is the

variance component percentage. Bonferroni-corrected p values: *, p < 0.05; **, p < 0.01; *** p < 0.0001.

Table 3. Results from nested multivariate analyses of variance (MANOV As).

Data used Level Pillai’s trace df (numerator, denominator) F

2003 Island 1.81 9, 12 2.03
Site(Island) 0.58 12, 42 0.83
Clutch(Site, Island) 0.92 42,753 7.96%%*

2004 Island 0.37 9, 30 0.47
Site(Island) 0.84 30, 186 2.41%*
Clutch(Site, Island) 1.39 186, 2286 10.64%%**

Year Year 0.10 3, 37 1.38
Site 0.67 18, 117 1.67*
Clutch(Year, Site) 1.22 117, 1785 10.407%**
Year x Site 0.56 18, 1785 22.96%**

Note: For 2003 and 2004 tests, Island was a fixed factor, and Site(Island) and Clutch(Site, Island) were
random factors. For the test of year, Year, Site, and their interaction were fixed factors, and Clutch(Year, Site)
was a random factor. All tests used LR elements (Sr, Ba, Pb). p values: *, p = 0.05; **, p < 0.01; *** p <
0.0001.

created by the natal otoliths, but many do not (53%, 42%,
and 36% of recruit cores fell outside of the 95% confidence
space of the natal otoliths for all islands, Hawaii, and Oahu,

respectively; Fig. 6).

Discussion

To use otolith chemistry to track larval dispersal, re-

searchers must be able to characterize the chemistry of the
natal portion of recruit otoliths (i.e., the core) and match
that signature with an atlas of natal otolith signatures from
potential source areas. Because the natal portion of otoliths
appears to be enriched relative to non-natal otolith material
(Brophy et al. 2004; Ruttenberg et al. 2005) and natal otolith
chemistry may not match that of the surrounding water
(Warner et al. 2005), it will be necessary to use natal oto-



Fig. 3. Discriminant function analysis (DFA) of clutch means for
2004. Jackknife reclassification success in parentheses follows the
description of each panel. (a) All islands (27.6%); (b) Hawaii, all
sites (26.9%); (c¢) Hawaii, sites within 25 km of the focal site
(71.6%); (d) Maui (46.7%); (e) Oahu (84.2%); (f) Kauai (37.5%).
See Table A3 in Appendix A for DFA loadings.
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liths collected from potential source areas to generate the at-
las of natal otolith chemistry.

The first step in any study of this kind is to determine the
scales over which the chemistry of natal otoliths varies. A
few recent studies have found some variation over moderate
scales (few tens of kilometres), but no consistent patterns
over larger scales (>150 km, Warner et al. 2005; Ruttenberg
and Warner 2006). In this study, we expected the strong gra-
dients in population, land use, rainfall/runoff, and volcanism
among the main Hawaiian Islands to create gradients in
aquatic chemistry (De Carlo and Spencer 1997; De Carlo
and Anthony 2002) and, consequently, the chemistry of na-
tal otoliths (Spencer et al. 2000). We found no patterns
among islands using either univariate or multivariate tests.
However, there was some variation at smaller scales: two of
the four islands we examined showed multivariate patterns
among sites within each island. Interestingly, this pattern
was apparent on the Island of Hawaii only when we in-
cluded sites that were within 25 km of the arbitrarily defined

Fig. 4. Annual mean elemental concentrations recorded in natal
otoliths, including only those sites for which there were at least
three clutches in 2004 and 2003. Error bars are +1 standard error
(SE).
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focal site; when we included all sites, which spanned around
100 km, jackknife reclassification success rates dropped
from 72% to 27% (with a corresponding change in p values
from 0.01 to 0.3).

Natal otolith chemistry may be inherently variable over
small scales, possibly because of small-scale changes in oce-
anography, anthropogenic inputs, or other unknown factors.
Small-scale sampling would detect this small-scale variation,
while nested sampling at larger scales would replicate the
small-scale pattern within each larger sampling unit and ob-
scure patterns at larger scales. There was some sign of this
effect in the hierarchical sampling scheme along the west



Fig. 5. Mean elemental concentrations for natal otoliths and recruit
cores for 2004. Error bars are =1 standard error (SE).
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shore of Hawaii, but small sample sizes limited our ability
to fully test this idea. If sites are inherently variable over
small scales, selecting a few sites from each region or island
(as in this study and in Warner et al. 2005 and Ruttenberg
and Warner 2006) would likely generate some structure
over small scales but none over larger ones. While it is still
unknown what factors might drive small-scale variation in
natal otolith chemistry, the fact that the same patterns ap-
pear in three separate studies suggests that variation at this
scale may be common. Additional studies using different
species in other systems are needed to confirm these pre-
liminary findings. The presence of small-scale variation in
natal otolith chemistry will greatly complicate our ability to
use these techniques to track larval dispersal. Even if no

Fig. 6. Discriminant function analyses (DFAs) of natal otoliths and
classifications of recruit cores for 2004. Discriminant functions and
95% confidence ellipses were generated using clutch means for Mn,
Sr, and Ba, and recruit cores were classified using these functions,
with jackknife values for each DFA in parentheses. (a) All islands
and all recruits (22.8%); (b) Hawaii, using sites within 25 km of the
focal site only and recruits from those sites (71.4%); (c¢) Oahu, with
recruits collected on Oahu (80.0%). See Table A3 in Appendix A
for DFA loadings.
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structure exists over larger scales, some spatial structure is
likely to emerge when studies include only a few sites at
smaller scales. However, this apparent small-scale structure
may not accurately characterize the true spatial structure,
even over small scales.



In addition to some variation among sites within islands,
we also found significant variation among clutches for all
analyses that included clutch as a nested term. Other studies
that have examined the chemistry of natal otoliths and stato-
liths have all found significant variation at the clutch or
brood level (Warner et al. 2005; Zacherl 2005; Ruttenberg
and Warner 2006), and other recent work has found strong
maternal effects on the composition of the natal portion of
the otolith (Thorrold et al. 2006). These findings suggest
that variation in maternal factors may have a strong influ-
ence on the chemical composition of the natal portion of
fish otoliths (and possibly mollusk statoliths); these maternal
effects may further confound any spatial patterns in water
chemistry and otolith chemistry.

It is also possible that some of the clutch-level effects
were the result of some contamination during sample proc-
essing, since natal otoliths were processed and run in
batches by clutch. However, it seems unlikely that all of the
clutch-level variation is attributable to processing artifacts.
We used previously published protocols (Warner et al.
2005; Zacherl 2005) and modified them to include an addi-
tional cleaning step to further minimize any contamination
during processing. Preliminary experiments demonstrated
that levels of a number of elements were significantly re-
duced by adding the second peroxide cleaning step (B. Rut-
tenberg and S. Hamilton, unpublished data). In addition,
while some elements may be more susceptible to contamina-
tion (e.g., Fe, Pb), others should be impervious to contami-
nation (e.g., Sr), and we found clutch-level effects for nearly
all elements in both years. Finally, any contamination would
have obscured any true variation, and we still observed sig-
nificant within-island variation for two islands using clutch
means. While these data suggest that contamination during
sample processing was minor, we cannot rule out the possi-
bility that contamination influenced variation at the clutch
level.

In addition to understanding how natal otolith chemistry
varies in space, it is also important to understand how natal
chemical signatures vary in time. Previous work has gener-
ated conflicting results using non-natal otolith material (see
Gillanders 2002, 2005 for reviews); some studies reported
relative temporal stability in otolith chemistry (Thorrold et
al. 1998; Campana et al. 2000), others found significant
temporal variability (Rooker et al. 2001; Gillanders 2002;
Swearer et al. 2003), and a few found a mix of stability and
variability, depending on the scale or the elements used
(Gillanders and Kingsford 2000; Brown 2006). While we
found no univariate or multivariate differences in chemical
signatures among years, DFAs were unable to classify 2003
samples accurately to site using the 2004 data as a training
data set for either Hawaii or Oahu (the two islands for
which we had samples from multiple sites in both years, us-
ing only sites that had sufficient samples in both years). If a
training data set from one year cannot reliably classify sam-
ples from another year, investigators may need to collect na-
tal otoliths for each recruit cohort they sample.

A number of previous studies have found spatial differen-
ces in otolith chemistry and suggested that this variation
may be used to track larval dispersal (e.g., Ashford et al.
2005; Chittaro et al. 2005). Fewer studies have examined
spatial variation in the natal portion of the otolith or statolith

(Warner et al. 2005; Zacherl 2005; Ruttenberg and Warner
2006). However, using otolith chemistry to track larval dis-
persal also requires information about the chemistry of oto-
lith cores of newly settled recruits. Values from recruit cores
should overlap with values from natal otoliths, since the na-
tal portion of the otolith ultimately comprises the core of the
otolith as the fish grows. A few other studies have examined
both natal otoliths and recruit cores; Ruttenberg and Warner
(2006) found that levels of all elements were higher in natal
otoliths than in recruit cores. They attributed these differen-
ces to the inclusion of non-core material during the ablation
of the enriched otolith cores (i.e., dilution of the core by
non-core, non-enriched material). Standish et al. (2008)
found that some elements were higher in natal otoliths but
others were higher in recruit cores.

In this study, we found that most elements (Mg, Sr, and
Ba) were significantly higher in natal otoliths than in recruit
cores. Differences in Mn were only marginally significant
(p = 0.06) but trended in the opposite direction. With differ-
ences in nearly all elements, many of the recruits fell out-
side of the 95% confidence space created by natal otoliths
(53%, 42%, and 36% for all islands, Hawaii, and Oahu, re-
spectively). Even though data on Mg, Sr, and Ba were col-
lected in MR from otolith cores and in LR from natal
otoliths, there were no differences between MR and LR in
measured concentrations of NIST standards for any element.
Since we used methodologies similar to those of Ruttenberg
and Warner (2006), it seems likely that the inclusion of non-
core material is also responsible for the differences that we
observed in most elements. However, this explanation can-
not account for differences in Mn that trended in the oppo-
site direction, and we are uncertain why Mn seems to
behave differently than other elements in this study. Differ-
ences between natal otoliths and recruit cores could occur if
the majority of recruits we collected were from unsampled
and chemically distinct locations, but given that we sampled
from multiple sites on the five largest islands in the Hawai-
ian chain, which span 500 km, this seems unlikely, espe-
cially given that we found no clear patterns over large
scales in the chemistry of natal otoliths. Regardless of the
cause, additional work is needed to determine how to appro-
priately sample the cores of recruit otoliths. We suggest that
using a laser with a smaller spot size (such as a 213 nm or
193 nm laser) or using fewer pulses in each pit may help
sample the area around the core more precisely, reducing
the potential inclusion of non-core material.

In this study, we provide evidence that the chemical com-
position of natal otoliths of a reef fish may vary over small
to moderate spatial scales (tens of kilometres) but not larger
ones (<100 km) in the Hawaiian Islands. In addition, we
found that natal signatures may not be temporally stable
and that our measurements of cores of recruits may not ad-
equately sample the natal portion of the otolith. The ideal
study system to examine larval connectivity along open
coasts would find temporally stable variation in natal otolith
chemistry over scales that match the potential dispersal dis-
tance of the species in question (likely many tens of kilo-
metres to 100 km in fishes), with little variation over
smaller scales (Becker et al. 2005). Estuarine systems often
have these characteristics, and otolith chemistry has been
applied successfully to track movement of juveniles and



adults (Thorrold et al. 2001; Gillanders 2005), but many of
the systems that have been used to track larval dispersal do
not have these characteristics. Unfortunately, our results
generally match those of the few previous studies of natal
otolith chemistry that found significant variation only over
smaller scales. Other methods, such as transgenerational
marking (e.g., Thorrold et al. 2006), may be more likely to
provide reliable data on larval sources. Even though the use
of natural variation in otolith chemistry does have the poten-
tial to measure larval connectivity, studies must be designed
to examine patterns of variation over multiple scales and ad-
ditional methodological development is needed before inves-
tigators will be able to apply these techniques successfully.
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Appendix A

Table Al. Estimates of precision (% RSD) and limits of detection (LOD).

NIST %RSD, NIST %RSD, LOD, LOD,
Element low resolution medium resolution low resolution medium resolution
Mg/Ca 9 20 0.01 0.006
Mn/Ca NA 16 NA 2.32
Fe/Ca NA 23 NA 13.3
Zn/Ca NA 42 NA 15.5
Sr/Ca 23 37 0.09 0.36
Ba/Ca 9 24 0.12 2.33
Pb/Ca 12 23 0.24 3.85

Note: Estimates of precision were obtained by analyzing NIST 612 glass standards using the same laser
and instrument settings used for otoliths. LODs were obtained by using the same instrument settings used for
otoliths, with no material ablated. Note that for limits of detection, values for Mg/Ca and Sr/Ca are given in
mmol-mol™, and those for Mn/Ca, Fe/Ca, Zn/Ca, Ba/Ca, and Pb/Ca are given in pmol-mol". Values for
9%RSD (% relative standard deviation) are dimensionless. NA, not applicable.



Table A2. Cutoff values for data filter and transformations

used.
Maximum Maximum
Element  value %RSD Transformation
Mg/Ca 3 100 Natural log
Mn/Ca 2300 200 Double square root
Fe/Ca 250 200 Square root
Zn/Ca 250 200 Square root
Sr/Ca 5 50 None
Ba/Ca 75 100 Natural log
Pb/Ca 5 200 Natural log

Note: Note that for maximum value, values of Mg/Ca and Sr/Ca
are given in mmol-mol™, and those for Mn/Ca, Ba/Ca, and Pb/Ca are
given in pmol-mol™'. Values for maximum %RSD (% relative stan-
dard deviation) are dimensionless.

Table A3. Weights for the discriminant functions, by ele-

ment.
Analysis (figure) Element DF1 DF2
By island (Fig. 3a) Sr -0.14 -0.64
Ba -1.05 0.45
Pb 0.85 0.38
Mn 0.98 0.09
Hawaii, all sites (Fig. 3b) Sr 0.57 0.05
Ba 095 -0.17
Pb -0.12 1.14
Mn 0.31 0.37
Hawaii, focal sites (Fig. 3¢) Sr 0.76 -0.50
Ba 1.40 0.06
Pb -0.21 0.88
Mn -032 -0.03
Maui (Fig. 3d) Sr 0.63 0.39
Ba 075  -0.79
Pb 1.50 1.06
Mn 0.98 1.16
Oahu (Fig. 3e) Sr 0.14 0.48
Ba -1.76 0.04
Pb -0.08 0.89
Mn 1.71 0.66
Kauai (Fig. 3f) Sr 0.85 0.14
Ba -0.05 1.12
Pb 037 -0.28
Mn -0.21  -0.67
Recruits, by island (Fig. 6a) Sr -0.06 0.95
Ba 1.08 0.21
Mn -0.56 -0.33
Recruits, Hawaii (Fig. 6b) Sr 0.76 1.07
Ba 133  -0.45
Mn -0.19 1.00
Recruits, Oahu (Fig. 6¢) Sr 0.17 0.79
Ba -1.64 0.65
Mn 1.62 0.59

Note: Each set of values corresponds to a specific analysis for a
specific figure. DF, discriminant function.





