174 research outputs found

    Rubinstein-Taybi syndrome with scoliosis

    Get PDF
    <p>Abstract</p> <p>Study Design</p> <p>Case report.</p> <p>Objective</p> <p>The authors present the case of a 14-year-old boy with Rubinstein-Taybi syndrome (RSTS) presenting scoliosis.</p> <p>Summary of Background Data</p> <p>There have been no reports on surgery for RSTS presenting scoliosis.</p> <p>Methods</p> <p>The patient was referred to our hospital for evaluation of a progressive spinal curvature. A standing anteroposterior spine radiograph at presentation to our hospital revealed an 84-degree right thoracic curve from T6 to T12, along with a 63-degree left lumbar compensatory curve from T12 to L4. We planned a two-staged surgery and decided to fuse from T4 to L4. The first operation was front-back surgery because of the rigidity of the right thoracic curve. The second operation of lumbar anterior discectomy and fusion was arranged 9 months after the first surgery to prevent the crankshaft phenomenon due to his natural course of adolescent growth. To avoid respiratory complications, the patient was put on a respirator in the ICU for several days after both surgeries.</p> <p>Results</p> <p>Full-length spine radiographs after the first surgery revealed no instrumentation failure and showed that the right thoracic curve was corrected to 31 degrees and the left lumbar curve was corrected to 34 degrees. No postoperative complications occurred after both surgeries.</p> <p>Conclusions</p> <p>We succeeded in treating the patient without complications. Full-length spine standing radiographs at one year after the second operation demonstrated a stable bony arthrodesis with no loss of initial correction.</p

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Mechano-Electric Feedback in the Fish Heart

    Get PDF
    Mechanoelectric feedback (MEF) describes the modulation of electrical activity by mechanical activity. This may occur via the activation of mechanosensitive ion channels (MSCs). MEF has not previously been investigated in fish ventricular tissue even though fish can greatly increase ventricular end diastolic volume during exercise which should therefore provide a powerful mechanical stimulus for MEF.When the ventricles of extrinsically paced, isolated working trout hearts were dilated by increasing afterload, monophasic action potential (MAP) duration was significantly shortened at 25% repolarisation, unaltered at 50% repolarisation and significantly lengthened at 90% repolarisation. This observation is consistent with the activation of cationic non-selective MSCs (MSC(NS)s). We then cloned the trout ortholog of TRPC1, a candidate MSC(NS) and confirmed its presence in the trout heart.Our results have validated the use of MAP technology for the fish heart and suggest that, in common with amphibians and mammals, MEF operates in fish ventricular myocardium, possibly via the activation of mechanosensitive TRPC1 ion channels

    Interactions Between Laminin Receptor and the Cytoskeleton During Translation and Cell Motility

    Get PDF
    Human laminin receptor acts as both a component of the 40S ribosomal subunit to mediate cellular translation and as a cell surface receptor that interacts with components of the extracellular matrix. Due to its role as the cell surface receptor for several viruses and its overexpression in several types of cancer, laminin receptor is a pathologically significant protein. Previous studies have determined that ribosomes are associated with components of the cytoskeleton, however the specific ribosomal component(s) responsible has not been determined. Our studies show that laminin receptor binds directly to tubulin. Through the use of siRNA and cytoskeletal inhibitors we demonstrate that laminin receptor acts as a tethering protein, holding the ribosome to tubulin, which is integral to cellular translation. Our studies also show that laminin receptor is capable of binding directly to actin. Through the use of siRNA and cytoskeletal inhibitors we have shown that this laminin receptor-actin interaction is critical for cell migration. These data indicate that interactions between laminin receptor and the cytoskeleton are vital in mediating two processes that are intimately linked to cancer, cellular translation and migration
    • …
    corecore