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Abstract 
The ensemble Kalman filter relies on the assumption that an observed quantity can be regarded as a 

stochastic variable that is Gaussian distributed with mean and variance that equals the measurement and 

the measurement noise, respectively. When a gauge has a minimum and/or maximum detection limit and 

the observed quantity is outside this range, the signal from the gauge can, however, not be related to the 

observed quantity in this way. The current study proposes a method for utilizing this kind of out-of-range 

observations with the ensemble Kalman filter by explicitly treating the out-of-range observations. By doing 

this it is possible to update the ensemble members that are within the observable range of the gauge 

towards the observation limit and thereby reduce the ensemble spread. The method is tested using both a 

linear and a non-linear simple forcing-driven model in perfect model experiments where the same model 

and noise descriptions are used for the truth simulation and for the ensemble Kalman filter. The results 

show that the positive impact of the method in case of range-limited observations can exceed that of 

increasing the ensemble size from 10 to 100 and that the method makes it possible to improve model 

forecasts using observations that would otherwise have been non-informative. 

Keywords: Data assimilation, ensemble Kalman filter, observation limit, range-limited observations. 

1 Introduction 
Most environmental modelling is associated with substantial uncertainties caused by model errors as well 

as uncertainties in input data. These uncertainties can be reduced by means of data assimilation (DA) that 

adjusts the model using measurements that are related to some of the modelled quantities. One of the 

most popular data assimilation methods is the Ensemble Kalman Filter (EnKF) introduced by Evensen (1994) 

as a flexible and efficient alternative to the Extended Kalman Filter for large non-linear models. The method 

can be seen as a Monte Carlo implementation of the classical Kalman filter  (Kalman, 1960) in which an 

ensemble of models is used to represent the error statistics. By doing this all the non-linearities in the 

model are included in the forward propagation of the error and are thereby implicitly included in the model 

update. The model update is linear and is based on the ensemble covariance calculated around the 
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ensemble mean, which means that the filter is only optimal for strictly linear systems with Gaussian errors. 

Nonetheless, the EnKF has proven very successful for non-linear models within a wide range of applications 

such as oceanography, meteorology, oil reservoir modelling, groundwater modelling, hydrology, etc. 

(Keppenne and Rienecker, 2002; Lee et al., 2012; Nævdal et al., 2003; Olume, 2006; Tong et al., 2012) and 

must be regarded as one of the most versatile DA methods available.  

In data assimilation the model is combined with information from multiple data sources. Every new 

independent observation can be used to improve the model accuracy and reduce the model uncertainty. 

This means that it is a big advantage if a DA scheme is capable of utilizing as many different kinds of 

observations as possible. Many of the measurements available in environmental systems are only defined 

within a certain interval. Examples of downwards limited measurements are any kind of concentration 

measurements, river water level measurements from satellite radar altimetry, float or pressure water level 

measurements, oil or ground water reservoir levels from borehole data, etc. Some measurements are 

furthermore only available within a limited interval of the actual variation of the quantity. An example of 

this is satellite estimated thickness of the ocean ice cover that can be used in global climate models 

(Kaleschke et al., 2010). The satellite data can be used to determine whether there is an ice cover or not 

but can only quantify the ice thickness up to approximately half a meter for the Arctic where the actual ice 

thickness can grow to several meters. Some measurements can even be of Boolean nature such as 

information about water or oil wells being empty or not,  or if there is overflow or not at a weir in urban 

hydrology (Thorndahl et al., 2008). Optimally all these data sources provide information about the state of 

the physical systems and therefore have the potential to improve model predictions. Most data 

assimilation methods, however, do not work in the absence of actual quantifiable observations. It has not 

been possible to find references in the data assimilation literature on the use of range-limited observations, 

which suggest that practice is either to not use data from gauges that are not continuously covering the 

observed quantities or to only perform the assimilation in the periods where quantifiable observations are 

available. This is, however, a waste of valuable information. When a gauge does not return a signal that is 

within its observable range, it provides the valuable information that the observed quantity is probably not 

within this range. An optimal data assimilation scheme should preferably be capable of using this 

information.  

The current study describes a new method for utilizing the information available in out-of-range 

observations when using the EnKF. The key element of the method is, in the absence of observations within 

range, to define a virtual observation at the limit of the observation interval. This artificial observation is 

then used to correct only the ensemble members that are within the observation interval even though the 

lack of observations suggests that the observed quantity is outside. This process is referred to as partial 

updating since usually only a part of the ensemble is updated. The justification and description of the 

method is described in the section “Partially updating ensemble”, where it is shown that the method in a 

consistent way enables the EnKF to operate with non-Gaussian data likelihoods of out-of-range 

observations. In the “Numerical Tests” and “Results and Discussion” sections the effect of the method is 

tested using both linear and non-linear reservoir cascade models, which could represent many forcing-

driven environmental systems. The method should, however, be valid for all types of models.  
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2 Background 

2.1 The Ensemble Kalman Filter 
In the following an overview of the most import parts of the EnKF will be given. A more thorough 

description can be found in (Evensen, 2003).  

The Kalman filter can be seen as a subset of Recursive Bayesian Estimation for linear models in which all 

variables are assumed Gaussian distributed, which means that the Kalman filter only works with the mean 

and (co)variance. The EnKF uses an ensemble of state-space models to represent the background error 

covariance that is needed for the Kalman filter. The ensemble is created by perturbing model forcing, 

model parameters and/or model states based on the modeller’s assumptions/knowledge of their errors. If 

an ensemble has n members, it can be written as: 

 𝑿 = [𝒙1, … . . , 𝒙𝑛] (1) 
 

where 𝒙𝑖 is the full state vector of the i’th ensemble member. 

Every time a new observation is available the ensemble is updated using this observation. The update state 

is called the analysed state and is in the following denoted with the superscript a.  The model is initialised 

with the updated ensemble and all the ensemble members are propagated forward in time until the next 

analysis. The model forecast is called the background state and will in the following be denoted with a 

superscript b. The EnKF analysis consists of applying the Kalman filter analysis equation separately to each 

member of the ensemble: 

 𝒙𝑖
𝑎  = 𝒙𝑖

𝑏 + 𝑲(𝒅𝑖 − 𝑯𝒙𝑖
𝑏) (2) 

 

where 𝑲 is the Kalman gain, 𝑯 is the measurement operator that maps the observations to the state 

variables, and 𝒅𝑖 is the vector of observations used to update the i’th ensemble member created by 

perturbing the actual observation vector d. 

K can be calculated from the background error covariance Pb and the observation error covariance R: 

 𝑲 = 𝑷𝑏𝑯𝑇(𝑯𝑷𝑏𝑯𝑇 +  𝑹)
−1

 (3) 

 

The main idea behind the EnKF is to replace the error covariance with the ensemble covariance which can 

be calculated from the ensemble. This is, however, not necessary to do explicitly since the gain can be 

computed much more efficiently directly from the ensemble without actually calculating and storing the 

ensemble covariance. Ways to do this are described in (Houtekamer and Mitchell, 2001; Sakov et al., 2010).  

When an update is performed, the ensemble spread is reduced and the ensemble mean moves towards the 

observation as illustrated in Figure 1 (Left). This process is repeated every time a new observation is 

available, see Figure 1 (right).  
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Figure 1: Single (left) and sequential (right) updates. The red dots are the background state values while the green dots are the 
state values after the updates. The rectangular blue marks are the observations. 

 

For Gaussian distributed variables the maximum-likelihood estimate equals the minimum-variance 

estimate (van Leeuwen and Evensen, 1996), which means that by regarding the ensemble covariance as 

being an efficient estimate of the background error covariance for each of the individual ensemble 

members, these can efficiently be updated using the Kalman filter. The ensemble of updated members 

represents the posterior distribution. If all the ensemble members are updated towards the same observed 

value using the standard Kalman update equation (2), then the ensemble spread is reduced too much 

compared to the theoretical optimal value. In order to overcome this problem the standard EnKF updates 

each ensemble member with independently perturbed observations with mean equal to the observed 

value and a variance that reflects the observation uncertainty  (Burgers et al., 1998; Houtekamer and 

Mitchell, 1998).  

2.2 Deterministic EnKF 
All ensemble based DA methods are affected by sampling errors due to the use of ensembles to represent 

probability distributions. The fact that the standard EnKF relies on perturbed observations results in 

additional sampling errors – especially in case of small ensemble sizes. This problem will be even more 

pronounced when updating only a part of the ensemble, as suggested in the current work. To address the 

sampling error problem Sarkov and Oke (2008) presented the Deterministic EnKF (DEnKF) which is a 

deterministic formulation of the EnKF in the sense that the observations are not perturbed. Instead the 

update is divided into two steps where, firstly, the ensemble mean is updated separately as in the regular 

EnKF (see above) and, secondly, the ensemble anomalies are updated using only half the gain in order to 

avoid excessive reduction in the ensemble spread. Proof of this approach can be found in Sarkov and Oke 

(2008).    

The anomalies are the deviations from the ensemble mean calculated as 

 𝑨𝑖 = 𝒙𝑖 − �̅� (4) 
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where �̅� is the ensemble mean state vector. Once the anomalies are calculated the mean is updated using 

equation (2) and the anomalies are updated using: 

  

 𝑨𝑎 = 𝑨𝑏 −
1

2
𝑲𝑯𝑨𝑏 (5) 

 

Hereafter the updated ensemble can be reconstructed by adding the updated anomalies to the updated 

mean state vector. The DEnKF is comparable to the ensemble square root filter (EnSRF) implementation of 

Whitaker & Hamill (2002), which uses a very similar analysis scheme, but calculates a factor α that is used 

instead of the factor of ½ in equation (5), in order to obtain a solution that exactly matches the theoretical 

optimal analysed error covariance in the linear case. The similarities are especially clear in the case of a 

single observation, in which case α is a scalar that converges from 1 towards ½ as the ensemble background 

error variance for the observed location decreases compared to the variance of the observation error. This 

implies that the DEnKF overestimates the analysed error covariance, with the largest overestimation when 

the observation error is relatively small, which can be seen as an implicit inflation of the ensemble.    
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3 Partially Updating Ensemble 
In case of an out-of-range observation (OR-observation) it is comprehensible that the ensemble members 

that are in fact outside the observable range should not be updated. What would be a reasonable update 

for the members that are inside the observable range is a much less intuitive question to answer. This will 

be explored in the following section.  

  

3.1 Posterior maximum likelihood estimate of individual ensemble members 

given out-of-range observations 
The EnKF can be seen as a Markov Chain Monte Carlo implementation in which the members of the 

ensemble, that describes the probability density of the true state, are conditioned on new data using 

recursive Bayesian estimation.  The conditioning is performed by the Kalman filter, which results in the 

maximum likelihood estimate when assuming Gaussian errors and data likelihood. 

The Kalman gain that is used to update each of the ensemble members is calculated from the ensemble 

statistics. This means that each ensemble member implicitly is attributed the ensemble variance as a priori 

variance, which is weighted against the observation variance in the process of estimating the posterior 

mean, as an approximation of the maximum likelihood estimate. By looking at the ensemble update in this 

way - as the process of finding the maximum of an implicit posterior distribution - it becomes possible to 

determine a reasonable and consistent update in the case of out-of-range observations by making a few 

assumptions about the OR-observation likelihood.   

First of all it is assumed that the likelihood is constant outside the observable range, since an OR-

observation in itself does not contain any information about the specific value of the observed quantity. 

Secondly, it is assumed that the shape of the likelihood function from the detection limit and into the 

observable range is determined by the observation uncertainty. This corresponds to assuming that there is 

a chance of the quantity not being observed even though it is within the observable range, and that this 

chance increases the closer the quantity is to the detection limit, according to the uncertainty of the gauge. 

An illustration of such an OR-observation likelihood function, in the case of a lower observation limit, can 

be seen in Figure 2.  

 

Figure 2: Data likelihoods when the gauge has a lower observation limit given an actual observation (red) and given an OR-

observation (blue). obs is the standard deviation of the observation. 
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According to Bayes rule the posterior distribution is proportional to the prior distribution multiplied with 

the likelihood function of the new data. In the case of an actual observation this is a product of two 

Gaussian distributions and is therefore itself Gaussian. This is not the case when using the OR-observation 

likelihood function that is illustrated in Figure 2. Figure 3 shows the implicit prior and posterior distributions 

of two members, one outside and one inside the observable range, being updated by the OR-likelihood. 

The location of the posterior maximum for member 2 will not change since the prior maximum coincides 

with the maximum of the likelihood function. This means that members outside the observable range 

should not be affected by the update given an OR-observation. Note that the mean of the posterior would 

be a poor estimator, since this would imply that the member would be adjusted away from the detection 

limit continuously whenever no observations are present. 

 

Figure 3: Implicit posterior distributions (dotted lines) of individual members conditioned on the OR-observation likelihood and 
Gaussian priors in the case where the member is inside (a) and outside (b) the observable range, respectively. The solid blue 
curve is the OR-observation likelihood when using a gauge with a lower detection limit. 

 

The situation for the member that is inside the observable range (Figure 3a) is quite different, but the 

location of the posterior maximum can still be deduced in a simple manner. Since the detection limit is 

located at the likelihood maximum, the mode of the posterior will be located somewhere between the 

detection limit and the mode of the prior. This means that the location of the posterior maximum solely is 

determined by the shape of the prior and the part of the likelihood function that is inside the observable 

range. Following the assumption that the shape of the likelihood function within the observable range is 

described by the observation uncertainty used for the actual observations, the posterior mode will be 

located the same place as if an actual observation was at the detection limit. This is very convenient since it 

means that the members that are within the observation interval, in case of an OR-observation, can be 

updated using the same analysis equations as when an actual observation is present, by simply assuming an 

observation at the detection limit. Meanwhile, the members that are outside the observable range should 

be left untouched.  

http://link.springer.com/article/10.1007%2Fs00477-014-0908-1
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To sum up, this means that when assuming an OR-observation likelihood as the one shown in Figure 2 and 

assuming Gaussian priors for all ensemble members, as it is implicitly done in the EnKF, the most likely 

value of the ensemble members can be found by only updating the ensemble members that are inside the 

observable range towards a virtual observation at the detection limit. The method is consistent in the sense 

that all ensemble members are conditioned on the same likelihood function. Note that the integral of the 

OR-observation likelihood function can be infinite, but since this integral is not computed in Bayes theorem 

it does not affect the general applicability of the method. Besides, the same posterior maximum will be 

found if the OR-observation likelihood function is set to zero somewhere outside the span of the ensemble, 

cf. Figure 3, which means that a finite integral can be obtained by setting the likelihood to zero for values 

above a threshold that is far from what will ever be observed for the quantity in question.    

3.2 Implementation 
For a well-functioning EnKF setup the forecasted background ensemble should span over the true state for 

the vast majority of the time. This implies that in most cases only part of the ensemble can be expected to 

be within the observable range in case of an OR-observation. Therefore only a part of the ensemble should 

be updated according to the procedure described above, which means that the update process would be 

very prone to suffer from sampling errors if based on the standard EnKF formulation using perturbed 

observations. Therefore the DEnKF formulation of the EnKF has been chosen as basis for the partial 

updating.  

The implementation is made by assuming a virtual observation at the detection limit whenever the 

observations are out of range. Since the members that are outside of the observable range should be left 

untouched, the mean should not be changed explicitly and only parts of the anomalies should be corrected. 

The updating scheme is conditioned upon the in- or out-of-range status of the observations, such that the 

ordinary DEnKF updating scheme is used in case of an actual observation while the partial updating scheme 

is used otherwise.  

The main part of the implementation is to construct the nobs x nens innovation matrix C for the updating of 

anomalies, where nobs and nens are the number of observations and number of ensemble members, 

respectively. The value of an element in C for a given observation and ensemble member determines, 

together with the Kalman gain, the change to the given ensemble member. In case of actual observations 

the DEnKF scheme is used which means that C contains the ensemble members’ departure from the 

ensemble mean at the observed location. In case of OR-observations the values in C equals the individual 

ensemble members’ departure from the observation limit, as long as these members are within the 

observable range – otherwise the values are set to zero. The work flow for this is described with pseudo 

code and equations below. For simplification the example is for a single observation point only.  

Analysis start  

  if d is an actual observation 

 𝑪 = 𝑯𝑨𝒃 (6) 

   else  

for each member i 
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   if 𝑯𝒙𝑖 is within observable range 

 𝑪𝑖 = 𝑯𝒙𝑖 − 𝑙𝑖𝑚𝑖𝑡 (7) 

   else 

 𝑪𝑖 = 0 (8) 

   end if 

end for each 

   end if-else 

 𝑨𝑎 = 𝑨𝑏 −
1

2
𝑲𝑪 (9) 

   when d is within range only: 

 �̅�𝑎 = �̅�𝑏 + 𝑲(𝒅 − 𝑯�̅�𝑏) (10) 

Analysis end  

 

Notice that in the case of actual observations the equations used are 6, 9 and 10, which correspond to the 

standard DEnKF updating scheme. A multiple observations implementation has to acknowledge that not all 

observations are within range at the same time. This can be done by updating the mean every time, but 

setting the innovations for the mean to zero for OR-observations. 

When sequentially applying the partial update to an ensemble, the distribution is likely to become skewed 

since only a part of the ensemble is updated and this is always in the same direction, see illustration in 

Figure 4. This means that the spread of the ensemble is reduced but at the cost of violating the Gaussian 

assumption behind the EnKF. The purpose of the EnKF is, however, not to produce Gaussian error 

estimates, but to produce the best error estimates with the information available, and the EnKF has proven 

to be efficient even for non-linear systems with non-Gaussian errors. The fact that the ensemble spread is 

reduced closer to the true value of the state makes it possible for the EnKF to estimate the covariance 

closer to the true state, which should provide better updates once an actual measurement becomes 

available.  
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Figure 4: Sequential ensemble updating with and without the use of partial updating when a gauge has a lower observation limit 
at the horizontal black dashed line. The solid blue rectangular marks are actual measurements while the empty blue rectangular 
marks indicate the virtual measurements used for the partial updating when no actual measurements are available. The red dots 
are the background state values while the green dots are the state values after the updates. The dashed blue lines show the true 
solution and the thin dotted black lines in the top show which posterior belongs to which prior.  
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4 Numerical Tests 

4.1 Models 
In this section the proposed partial updating scheme is illustrated on two simple reservoir cascade models. 

The models are inspired from the simple forecast models often used in hydrology (Aubert et al., 2003; 

Birkel et al., 2010; Löwe et al., 2013; Thorndahl et al., 2013) but are likely to resemble many forcing-driven 

environmental models. Both models consist of three linear or piecewise linear reservoirs with forcing 

applied to the first reservoir only while the observations are on the last reservoir. The dimensionless forcing 

for both models follows a Gamma distribution with shape parameter of 0.01 and a scale parameter of 100. 

The models are integrated forward in time using the standard fourth-order Runge-Kutta method.  

4.1.1 Linear model 

The linear model is defined as: 

 
𝑑 [

𝒙1

𝒙2

𝒙3

] = [

𝐹 − 𝑘𝒙1

𝑘𝒙1 − 𝑘𝒙2

𝑘𝒙2 − 𝑘𝒙3

] 𝑑𝑡 (11) 

 

where xi, i=1,2,3 are components of the state vector, k = 1/100 is the reservoir constant, and F is the model 

forcing. 

4.1.2 Non-linear model 

The only way in which the non-linear model used in the following differs from the linear model is that the 

constant k for the first two reservoirs is dependent on the state value, thereby creating two different model 

domains:   

 
𝑑 [

𝒙𝟏

𝒙𝟐

𝒙𝟑

] = [

𝐹 − 𝑘1𝒙𝟏

𝑘1𝒙𝟏 − 𝑘2𝒙𝟐

𝑘2𝒙𝟐 − 𝑘3𝒙𝟑

] 𝑑𝑡 (12) 

 

where 𝑘3 = 1/100 and 𝑘𝑗 =
1

100
𝑖𝑓 𝒙𝒋 < 125  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑘𝑗 =

1

200
 ,    j=1,2; 

4.2 Observations 
The measurement equation for both models is: 

 𝑑 = 𝑯𝒙 + 𝜖 (13) 
 

where d is a measurement, the measurement operator 𝑯 = [𝟎 𝟎 𝟏] and ϵ is Gaussian noise representing 

the observation error. This is used for creating artificial observations as well as for the Kalman filter 

analysis. 

The partial update is tested on both models using gauges with the following four observable ranges:  

 >75 
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95-105 

>150  

75-125  

>75  

 >150 

 75-125 

 95-105 

The ranges are illustrated to the right on Figure 5, which also shows the state value of all three reservoirs 

for a single deterministic simulation with the linear model without any updating. The red curve indicates 

the state value in the third reservoir (where the gauge is situated). When using a gauge with a lower 

observation limit of 75, the state is observed the vast majority of the time while the state is only observed 

for a small fraction of the time when the limit is at 150. The two closed observation intervals are also 

shown on the figure (the red and green bars). These cover only a limited portion of the range of the 

variable. The intervals are implemented as gauges that have a lower observation limit and furthermore 

become saturated when the observed quantity is above the upper observation limit. This means that when 

the quantity is outside the observed range, the OR-observation is a measurement of the quantity being 

below or above the observed range, as would be the case for e.g. many concentration measurements. 

When the OR-observation is below the observed interval, partial updating is applied as when having a 

lower limit only, while an upper limit implementation is used when the OR-observation is above the 

interval. Note that the 95-105 interval is so narrow that the observations are almost entirely reduced to 

being Boolean as ‘lower-than’ or ‘higher-than’. 

 

 

 

4.3 Forecasting and performance quantification 
The tests are performed using an artificial truth created with the same model as used in the tests. 

Observations are created for the third state variable as perturbations from the truth using Gaussian 

observation noise with zero mean and a variance of 1. In the same way measured model forcing is created 

as perturbations of the model forcing used for the truth model by multiplying the true forcing with a factor 

uniformly distributed between 0 and 2. The same noise description is used for creating forcing 

perturbations from the measured forcing, to be used for the EnKF. The assumed model noise used with the 

EnKF is state proportional white Gaussian noise with a standard deviation σmodel of 0.05 times the state 

value. The noise is truncated at ±3σmodel. 

Figure 5: The result of a single deterministic model simulation. The different coloured lines show the 
values for each of the three state variables. The dotted horizontal lines show two of the lower thresholds 
used in the following at 75 and 150, respectively. To the right the four gauge observable ranges are 
displayed. 
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For every time step the model is updated using DEnKF from the observations on the third state variable if 

the observations are within the defined observable range of the gauge. If the observations are outside the 

observable range, the partial update scheme is used. For each time step the mean of the updated ensemble 

is used as basis for producing deterministic forecasts with time horizons up to 300 time steps. The total 

simulation is 104 time steps long but the first 1000 time steps are used as initialization period and not 

included in the evaluation. The measured model forcing is used during the forecasts, which means that 

there are no additional errors related to the forecast of the forcing. Each setup is run 100 times with 

different realisations of observations and model forcing. The update performance is quantified as the mean 

of the forecast performance for these 100 simulations. 

The main measure of performance is an analogue to the coefficient of determination known as the Nash-

Sutcliffe efficiency index  R2, (Nash and Sutcliffe, 1970):  

 
𝑅2 = 1 −

𝑆𝑆𝑒𝑟𝑟

𝑆𝑆𝑡𝑜𝑡𝑎𝑙
= 1 −

∑ (𝒙3(𝑡) − 𝒙_𝒕𝒓𝒖𝒆𝟑(𝑡))2𝑇
𝑡=1

∑ (𝒙_𝒕𝒓𝒖𝒆𝟑(𝑡) − 𝒙_𝒕𝒓𝒖𝒆𝟑̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑇
𝑡=1

 (14) 

 

where T is the total number of time steps in the evaluation period, x3 is the forecast initiated from the 

mean of the updated ensemble, and x_true is the computed truth. Here, R2 has been preferred over RMSE 

since the latter is very sensitive to the absolute values of the largest variations, meaning that the overall 

mean performance of the 100 runs could end up being representative of only a few of the runs. This will 

not be the case with R2 since this is scaled with the total sum of squares of the individual runs. When R2 is 1, 

the model predictions are perfect while the mean of the observations is a better predictor than the model 

when R2 is negative. 

The second measure of performance is the median absolute error of each forecast time series which is 

computed in order to have a measure of performance that is insensitive to the most extreme values but 

foremost quantifies the typical deviation from the truth.   

 𝑚𝑒𝑑𝑖𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝒙3 − 𝒙_𝒕𝒓𝒖𝒆𝟑|) (15) 
 

Ensemble based data assimilation methods are often used for very computationally expensive models and 

therefore the required ensemble size is a critical parameter that can determine whether it is at all feasible 

to use data assimilation with a given model. Therefore the tests are run with both an ensemble size of 100, 

that would generally be regarded as sufficient, as well as an ensemble size of just 10, in order to investigate 

how the partial update performs under these different circumstances and to evaluate to which extent the 

partial update can open up for the use of a much smaller ensemble size.  
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5 Results and Discussion 
In the following the prefix “P” is used to indicate that partial updating has been used, so that PDEnKF 

means that the ensemble was updated with DEnKF when actual observations were available and partial 

updating has been used in case of OR-observations. Figure 6 shows how much the model forecast skills are 

improved by PDEnKF when using gauges with various lower limits. The figure shows that none of the two 

models are very useful as forecast models without updating (green line) since the R2 values in this case are 

as low as 0.15 and 0 for the linear and non-linear model, respectively. For both models an ensemble size of 

10 is clearly too small if the models are to be used to create long-range predictions, since updating makes 

the models perform worse. In real life applications this would be counteracted by using localization 

(techniques for limiting the impact of the updates as a function of the distance to the observation (Hamill 

et al., 2001)), but this has not been used in the following since the purpose of this study is to investigate the 

isolated effect of the partial updating. 

 

Figure 6: R
2
 when using partial updating with DEnKF and gauges with various lower limits. The black line is without a lower limit 

and thereby the partial update has not been used. The green line is the results without updating. Dotted and solid lines indicate 
ensemble sizes of 10 and 100, respectively.  

Interestingly, there seems to be almost no difference between having a lower limit at 75 or at 0 (using 

DEnKF implementation where all values are assimilated). This suggests that in cases where it is difficult to 

describe the observation uncertainty for the very low values or where the model is known to show a non-

physical behaviour for the low ranges, the partial update can be used to exclude this range from the DA 

operation without loss of forecasts accuracy. It can be seen from the following figures that a lower limit of 

75 leads to some drop in the forecast accuracy if not using partial updating. Note that for the long lead 

times for the non-linear model it even turns out to be beneficial to use the highest lower limit at 150. This 

shows that it in some cases is an advantage to disregard observations and just restrict the ensemble spread 

to some relevant interval.  

Figure 7 and Figure 8 compare the performance of DEnKF with and without partial updating (DEnKF vs. 

PDEnKF). The results consistently show that it is beneficial to use partial updating. As would be expected, 

the benefit compared to standard DEnKF is very small when the observed quantity is within the observable 

range most of the time (lower limit at 75) while the improvement is significantly larger when this is not the 
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case. In many of the setups the positive impact on the short to medium range forecasts of introducing 

partial update when using an ensemble size of 10 is larger than that of increasing the ensemble size to 100. 

For the non-linear model this is the case even for the longest forecasts when having a lower observation 

limit at 150. When using the non-linear model with an ensemble size of 10 and the narrow observation 

interval from 95 to 105, the partial update makes the difference between having a model that does not 

even produce useful 1 step predictions and having a decent model with some predictive ability up to some 

hundred steps into the future. 

 

Figure 7: R
2
 when using the linear model. The dotted and solid lines show the results when using 10 and 100 ensemble members, 

respectively. The blue and red lines are with and without partial updating, respectively.  
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Figure 8: R
2
 when using the non-linear model. The dotted and solid lines show the results when using 10 and 100 ensemble 

members, respectively. The blue and red lines are with and without partial updating, respectively. 

The limits of the R2 values show that the estimation and forecasts of the highest values are improved by the 

partial update, but since the extremes are always above the lower observation limits the forecasts will 

often have been initiated while actual measurements were available and are therefore produced under 

quite different circumstances than the typical forecast. This is in particular true when the lower gauge limit 

is high. Therefore a plot is shown of the Median Absolute Error for both models using a lower limit of 150, 

see Figure 9. This reveals that the median error is improved significantly by the partial update even though 

this performance measure foremost relates to values that are far below the lower observation limit. The 

ensemble size, on the other hand, has almost no impact on the results.  
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Figure 9: The median absolute error for both models when using a gauge with a lower limit at 150. 

   

All the results shown are based on the DEnKF with and without partial updating. The method can also be 

used in combination with the standard EnKF formulation with perturbed observations, as long as the partial 

update is still performed using the deterministic formulation. This was also tested with much the same 

results as the ones shown here, but with generally lower R2 values for the small ensemble sizes. For clarity, 

these results have been omitted from the article. 

The method is based on using a very non-Gaussian data likelihood for OR-observations. Even though the 

EnKF assumes strictly Gaussian data likelihoods and is known to suffer from poor performance when this is 

not the case (Sætrom and Omre, 2011), it was shown that the non-Gaussian likelihood function chosen 

here could be treated in a consistent way in the EnKF settings. The method can only be justified with the 

specific OR-observation likelihood function used, which assumes constant likelihood outside the observable 

range. One could argue that the distribution of an unobserved quantity is not uniform. This is, however, not 

information related directly to the lack of observations, but rather to the model dynamics, and should 

therefore not be accounted for by the likelihood function.  

If the lack of observations is due to malfunctioning measuring equipment and not due to the observed 

quantity being outside the observable range, the partial updating scheme will deteriorate the model 

estimates. The method is very vulnerable to this kind of error and therefore some sort of automated quality 

control is likely to be required for most real life applications of the method.  

When using any data assimilation scheme on large distributed models, there will usually be a need for 

localization when the ensemble size is superseded by the number of state variables in the model (Oke et 

al., 2007; Petrie and Dance, 2010). The fact that the OR-observations are treated in the same way as actual 

observations permits the use of a standard Schur product based localization. 
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6 Conclusions 
We propose a method, referred to as partial updating, that adds to the versatility of the EnKF by making it 

possible to utilize the information present in the signal from a gauge when the observed quantity is not 

within the observable range. The method can be used in the case where a gauge has an upper and/or lower 

observation limit and therefore is not capable of observing the quantity of interest all the time. In the case 

where the observations show that the quantity is outside the observable interval but some of the members 

of the ensemble are inside the interval, these are corrected towards the limit of the interval. The method 

provides a way of restricting the ensemble spread in periods without actual observations and thereby 

improving the update of the filter once actual measurements become available, but also improving the 

immediate state estimate. The results show that it is always beneficial to use partial updating if the gauge 

has a limited range. The greatest improvement is achieved for a non-linear model. In the most extreme 

case where the observation interval is very narrow and the observations therefore most of the time is just 

an indication of whether the quantity is above or below the observation interval, the use of partial updating 

is absolutely critical for producing skilful forecasts. In many of the tests the positive impact of including 

partial updating in the EnKF setup greatly outweighs that of increasing the ensemble size from 10 to 100. 

This shows that the partial updating makes it possible to utilize information that would otherwise be 

inaccessible for the EnKF.  
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