8 research outputs found
Effects of sodium chloride on the mechanical strength of alkali activated volcanic ash and slag pastes under room and elevated temperatures
This study investigated effects of the sodium chloride on the microstructural and mechanical properties of alkali activated volcanic ash (VA) and ground granulated blast furnace slag as well as Portland cement pastes. To this end, unconfined compressive strength (UCS), scanning electron microscopy (SEM)-EDS-Mapping, FTIR, and XRD tests were conducted. Furthermore, effects of curing temperature on the binding capacity of chloride in alkali activated cements were examined in both elevated (HT) and room (RT) temperature conditions. The VA was replaced by slag at 0, 50, and 100 wt%. Based on the results, samples containing 100 wt% slag showed the highest mechanical strength in both curing conditions. Besides, addition of sodium chloride from 0 to 10 wt% did not significantly affect the strength of samples containing 100 wt% volcanic ash in both curing conditions. On the other hand, in HT condition, mechanical strength of samples containing 50 and 100 wt% slag, as well as Portland cement pastes increased with increasing sodium chloride from 0 to 2.5 wt%, and further addition of sodium chloride by up to 10 wt% led to a reduction in their strength. However, compressive strength of samples containing 50 and 100 wt% slag, as well as Portland cement samples, decreased with the addition of sodium chloride from 0 to 10 wt% in RT condition. Microstructural investigations were conducted, aiming to find the mechanism controlling the reactions. It was found that (N,C)-A-S-H and C-S-H gels were the dominant factor in the solidification and encapsulation of chloride ions in slag-based samples
Mechanical strength of saline sandy soils stabilized with alkali-activated cements
Saline soils usually cannot satisfy the requirements of engineering projects because of their inappropriate geotechnical properties. For this reason, they have always been known as one of the problematic soils worldwide. Moreover, the lack of access to normal water has intensified the use of saline water resources such as seawater in many construction and mining projects. Although cement stabilization is frequently used to improve the engineering properties of saline soils, Portland cement’s usage as a binder is constrained by its negative consequences, particularly on the environment. In this line, the effects of NaCl on the microstructural and mechanical properties of alkali-activated volcanic ash/slag-stabilized sandy soil were investigated in this study. Moreover, the effects of binder type, slag replacement, curing time, curing condition, and NaCl content on the mechanical strength of stabilized soils were examined. In addition, microstructural analyses, including XRD, FTIR, and SEM–EDS mapping tests, were performed to understand the physical and chemical interaction of chloride ions and alkali-activated cements. The results show that alkali-activated slag can be a sustainable alternative to Portland cement for soil stabilization projects in saline environments. The increase in sodium chloride (NaCl) content up to 1 wt.% caused the strength development up to 244% in specimens with 50 and 100 wt.% slag, and adding more NaCl had no significant effect on the strength in all curing conditions. Microstructural investigations showed that the replacement of volcanic ash with slag resulted in the formation of C-S-H and C-A-S-H gels that reduced the porosity of the samples and increased mechanical strength. Furthermore, surface adsorption and chemical encapsulation mechanisms co-occurred in stabilized soil samples containing slag and volcanic ash
Investigating accelerated carbonation for alkali activated slag stabilized sandy soil
Portland cement as a commonly used material in soil stabilization projects, releases considerable amounts of CO2 into the atmosphere, highlighting the need to use green binders such as ground granulated blast furnace slag as a substitute for cement. On the other side, extensive research is being conducted on accelerated carbonation treatment to decrease the industry’s carbon footprint. Carbonation transforms CO2 into carbonate minerals. This study investigates the influence of accelerated carbonation on the unconfined compressive strength (UCS) of soil stabilized with alkali-activated slag under ambient and oven curing conditions. Effects of curing time, binder content, relative density, and carbonation pressure (100, 200, and 300 kPa) were also studied. Furthermore, a calcimeter test was conducted to determine the amount of carbonate generated, which reflects CO2 sequestration in soil. The results showed that the carbonated samples achieved higher strength than the non-carbonated samples. However, a slight decrease in UCS was observed with the increase in CO2 pressure. The generated carbonate content directly correlated with the UCS of the samples, which explained the higher strength of carbonated samples. Also, the ambient curing condition was more favorable for the samples stabilized with GGBS, which can be attributed to the supply of required moisture. Results from XRD, SEM, and FTIR indicated that the strength development was due mainly to the formation of carbonation products (CaCO3), which facilitated the densification of solidified materials
Effect of CO2 exposure on the mechanical strength of geopolymer-stabilized sandy soils
In recent years, there has been growing interest in developing methods for mitigating greenhouse effect, as greenhouse gas emissions continue to contribute to global temperature rise. On the other hand, investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted. However, the effect of CO2 exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported. In this context, the effect of CO2 exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated. Several factors were concerned, for example the binder content, relative density, CO2 pressure, curing condition, curing time, and carbonate content. The results showed that the compressive strength of the stabilized sandy soil specimens with 20% volcanic ash increased from 3 MPa to 11 MPa. It was also observed that 100 kPa CO2 pressure was the optimal pressure for strength development among the other pressures. The mechanical strength showed a direct relationship with binder content and carbonate content. Additionally, in the ambient curing (AC) condition, the mechanical strength and carbonate content increased with the curing time. However, the required water for carbonation evaporated after 7 d of oven curing (OC) condition and as a result, the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples. Moreover, the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate
Proceedings of International Web Conference in Civil Engineering for a Sustainable Planet
This proceeding contains articles of the various research ideas of the academic community and practitioners accepted at the "International Web Conference in Civil Engineering for a Sustainable Planet (ICCESP 2021)". ICCESP 2021 is being Organized by the Habilete Learning Solutions, Kollam in Collaboration with American Society of Civil Engineers (ASCE), TKM College of Engineering, Kollam, and Baselios Mathews II College of Engineering, Kollam, Kerala, India.
Conference Title: International Web Conference in Civil Engineering for a Sustainable PlanetConference Acronym: ICCESP 2021Conference Date: 05–06 March 2021Conference Location: Online (Virtual Mode)Conference Organizer: Habilete Learning Solutions, Kollam, Kerala, IndiaCollaborators: American Society of Civil Engineers (ASCE), TKM College of Engineering, Kollam, and Baselios Mathews II College of Engineering, Kollam, Kerala, India