10 research outputs found

    Modality Completion via Gaussian Process Prior Variational Autoencoders for Multi-Modal Glioma Segmentation

    Full text link
    In large studies involving multi protocol Magnetic Resonance Imaging (MRI), it can occur to miss one or more sub-modalities for a given patient owing to poor quality (e.g. imaging artifacts), failed acquisitions, or hallway interrupted imaging examinations. In some cases, certain protocols are unavailable due to limited scan time or to retrospectively harmonise the imaging protocols of two independent studies. Missing image modalities pose a challenge to segmentation frameworks as complementary information contributed by the missing scans is then lost. In this paper, we propose a novel model, Multi-modal Gaussian Process Prior Variational Autoencoder (MGP-VAE), to impute one or more missing sub-modalities for a patient scan. MGP-VAE can leverage the Gaussian Process (GP) prior on the Variational Autoencoder (VAE) to utilize the subjects/patients and sub-modalities correlations. Instead of designing one network for each possible subset of present sub-modalities or using frameworks to mix feature maps, missing data can be generated from a single model based on all the available samples. We show the applicability of MGP-VAE on brain tumor segmentation where either, two, or three of four sub-modalities may be missing. Our experiments against competitive segmentation baselines with missing sub-modality on BraTS'19 dataset indicate the effectiveness of the MGP-VAE model for segmentation tasks.Comment: Accepted in MICCAI 202

    Towards Optimal Patch Size in Vision Transformers for Tumor Segmentation

    Full text link
    Detection of tumors in metastatic colorectal cancer (mCRC) plays an essential role in the early diagnosis and treatment of liver cancer. Deep learning models backboned by fully convolutional neural networks (FCNNs) have become the dominant model for segmenting 3D computerized tomography (CT) scans. However, since their convolution layers suffer from limited kernel size, they are not able to capture long-range dependencies and global context. To tackle this restriction, vision transformers have been introduced to solve FCNN's locality of receptive fields. Although transformers can capture long-range features, their segmentation performance decreases with various tumor sizes due to the model sensitivity to the input patch size. While finding an optimal patch size improves the performance of vision transformer-based models on segmentation tasks, it is a time-consuming and challenging procedure. This paper proposes a technique to select the vision transformer's optimal input multi-resolution image patch size based on the average volume size of metastasis lesions. We further validated our suggested framework using a transfer-learning technique, demonstrating that the highest Dice similarity coefficient (DSC) performance was obtained by pre-training on training data with a larger tumour volume using the suggested ideal patch size and then training with a smaller one. We experimentally evaluate this idea through pre-training our model on a multi-resolution public dataset. Our model showed consistent and improved results when applied to our private multi-resolution mCRC dataset with a smaller average tumor volume. This study lays the groundwork for optimizing semantic segmentation of small objects using vision transformers. The implementation source code is available at:https://github.com/Ramtin-Mojtahedi/OVTPS

    Author Correction: Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    10.1038/s41467-023-36188-7NATURE COMMUNICATIONS14

    Federated learning enables big data for rare cancer boundary detection.

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    Federated Learning Enables Big Data for Rare Cancer Boundary Detection

    Get PDF
    Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizability is concerning. This is currently addressed by sharing multi-site data, but such centralization is challenging/infeasible to scale due to various limitations. Federated ML (FL) provides an alternative paradigm for accurate and generalizable ML, by only sharing numerical model updates. Here we present the largest FL study to-date, involving data from 71 sites across 6 continents, to generate an automatic tumor boundary detector for the rare disease of glioblastoma, reporting the largest such dataset in the literature (n = 6, 314). We demonstrate a 33% delineation improvement for the surgically targetable tumor, and 23% for the complete tumor extent, over a publicly trained model. We anticipate our study to: 1) enable more healthcare studies informed by large diverse data, ensuring meaningful results for rare diseases and underrepresented populations, 2) facilitate further analyses for glioblastoma by releasing our consensus model, and 3) demonstrate the FL effectiveness at such scale and task-complexity as a paradigm shift for multi-site collaborations, alleviating the need for data-sharing

    High Tissue Contrast MRI Synthesis Using Multi-Stage Attention-GAN for Segmentation

    No full text
    Magnetic resonance imaging (MRI) provides varying tissue contrast images of internal organs based on a strong magnetic field. Despite the non-invasive advantage of MRI in frequent imaging, the low contrast MR images in the target area make tissue segmentation a challenging problem. This paper demonstrates the potential benefits of image-to-image translation techniques to generate synthetic high tissue contrast (HTC) images. Notably, we adopt a new cycle generative adversarial network (CycleGAN) with an attention mechanism to increase the contrast within underlying tissues. The attention block, as well as training on HTC images, guides our model to converge on certain tissues. To increase the resolution of HTC images, we employ multi-stage architecture to focus on one particular tissue as a foreground and filter out the irrelevant background in each stage. This multi-stage structure also alleviates the common artifacts of the synthetic images by decreasing the gap between source and target domains. We show the application of our method for synthesizing HTC images on brain MR scans, including glioma tumor. We also employ HTC MR images in both the end-to-end and two-stage segmentation structure to confirm the effectiveness of these images. The experiments over three competitive segmentation baselines on BraTS 2018 dataset indicate that incorporating the synthetic HTC images in the multi-modal segmentation framework improves the average Dice scores 0.8%, 0.6%, and 0.5% on the whole tumor, tumor core, and enhancing tumor, respectively, while eliminating one real MRI sequence from the segmentation procedure
    corecore