138 research outputs found

    Condiciones de ambiente controlado

    Get PDF

    Las "normas" ambientales en cunicultura

    Get PDF

    Thermonuclear Burning on the Accreting X-Ray Pulsar GRO J1744-28

    Get PDF
    We investigate the thermal stability of nuclear burning on the accreting X-ray pulsar GRO J1744-28. The neutron star's dipolar magnetic field is <3\times 10^{11} G if persistent spin-up implies that the magnetospheric radius is less than the co-rotation radius. After inferring the properties of the neutron star, we study the thermal stability of hydrogen/helium burning and show that thermonuclear instabilities are unlikely causes of the hourly bursts seen at very high accretion rates. We then discuss how the stability of the thermonuclear burning depends on both the global accretion rate and the neutron star's magnetic field strength. We emphasize that the appearance of the instability (i.e., whether it looks like a Type I X-ray burst or a flare lasting a few minutes) will yield crucial information on the neutron star's surface magnetic field and the role of magnetic fields in convection. We suggest that a thermal instability in the accretion disk is the origin of the long (~300 days) outburst and that the recurrence time of these outbursts is >50 years. We also discuss the nature of the binary and point out that a velocity measurement of the stellar companion (most likely a Roche-lobe filling giant with m_K>17) will constrain the neutron star mass.Comment: 19 pages, 3 PostScript figures, uses aaspp4.sty and epsfig.sty, to appear in the Astrophysical Journa

    An Optical Precursor to the Recent X-ray Outburst of the Black Hole Binary GRO J1655-40

    Get PDF
    The All Sky Monitor on the Rossi X-ray Timing Explorer detected an X-ray (2-12 keV) outburst from the black hole binary GRO J1655-40 beginning near April 25, 1996. Optical photometry obtained April 20-24, 1996 shows a steady brightening of the source in B, V, R, and I beginning about six days before the start of the X-ray outburst. The onset of the optical brightening was earliest in I and latest in B. However, the rate of the optical brightening was fastest in B and slowest in I. The order of the increases in the different optical filters suggests that the event was an "outside-in" disturbance of the accretion disk. The substantial delay between the optical rise and the rise of the X-rays may provide indirect support for the advection-dominated accretion flow model of the inner regions of the accretion disk.Comment: 8 pages, 2 figures, Latex (uses the standard AAS style file aas2pp4.sty), accepted for publication in the ApJ Letter

    Classical Novae as a Probe of the Cataclysmic Variable Population

    Full text link
    Classical Novae (CNe) are the brightest manifestation of mass transfer onto a white dwarf in a cataclysmic variable (CV). As such, they are probes of the mass transfer rate, Mdot, and WD mass, Mwd, in these interacting binaries. Our calculations of the dependence of the CN ignition mass, Mign, on Mdot and Mwd yields the recurrence times of these explosions. We show that the observed CNe orbital period distribution is consistent with the interrupted magnetic braking evolutionary scenario, where at orbital periods Porb > 3 hr mass transfer is driven by angular momentum loss via a wind from the companion star and at Porb < 3 hr by gravitational radiation. About 50% of CNe occur in binaries accreting at Mdot ~= 10^{-9} Msun/yr with Porb = 3-4 hr, with the remaining 50% split evenly between Porb longer (higher Mdot) and shorter (lower Mdot) than this. This resolution of the relative contribution to the CN rate from different CVs tells us that 3(9)x10^5 CVs with WD mass 1.0(0.6)Msun are needed to produce one CN per year. Using the K-band specific CN rate measured in external galaxies, we find a CV birthrate of 2(4)x10^{-4}/yr per 10^{10}Lsun,K, very similar to the luminosity specific Type Ia supernova rate in elliptical galaxies. Likewise, we predict that there should be 60-180 CVs for every 10^6Lsun,K in an old stellar population, similar to the number of X-ray identified CVs in the globular cluster 47 Tuc, showing no overabundance relative to the field. Using a two-component steady state model of CV evolution we show that the fraction of CVs which are magnetic (22%) implies a birthrate of 8% relative to non-magnetic CVs, similar to the fraction of strongly magnetic field WDs. (abridged)Comment: 6 pages, 2 figures, Accepted to the Astrophysical Journa

    The global structure of thin, stratified "alpha"-discs and the reliability of the one layer approximation

    Full text link
    We report the results of a systematic comparison between the vertically averaged model and the vertically explicit model of steady state, Keplerian, optically thick "alpha"-discs. The simulations have concerned discs currently found in three different systems: dwarf novae, young stellar objects and active galactic nuclei. In each case, we have explored four decades of accretion rates and almost the whole disc area (except the narrow region where the vertically averaged model has degenerate solutions). We find that the one layer approach gives a remarkably good estimate of the main physical quantities in the disc, and specially the temperature at the equatorial plane which is accurate to within 30% for cases considered. The major deviations (by a factor < 4) are observed on the disc half-thickness. The sensitivity of the results to the "alpha"-parameter value has been tested for 0.001 < alpha < 0.1 and appears to be weak. This study suggests that the ``precision'' of the vertically averaged model which is easy to implement should be sufficient in practice for many astrophysical applications.Comment: 4 pages, PostScript. Accepted in Astronomy & Astrophysic

    SHORTCUT METHOD OF SOLUTION OF GEODESIC EQUATIONS FOR SCHWARZSCHILD BLACK HOLE

    Get PDF
    It is shown how the use of the Kerr-Schild coordinate system can greatly simplify the formulation of the geodesic equation of the Schwarzschild solution. An application of this formulation to the numerical computation of the aspect of a non-rotating black hole is presented. The generalization to the case of the Kerr solution is presented too.Comment: 11 pages, 2 PostScript figures (available as uuencoded compressed tar file), uses epsfig.tex). Accepted on February 1995 for publication in Classical and Quantum Gravit

    On the nature of the ultraluminous X-ray transient in Cen~A (NGC 5128)

    Full text link
    We combine 9 ROSAT, 9 Chandra, and 2 XMM-Newton observations of the Cen~A galaxy to obtain the X-ray light curve of 1RXH J132519.8-430312 (=CXOU J132519.9−-430317) spanning 1990 to 2003. The source reached a peak 0.1-2.4 keV flux F_X>10^{-12} ergs cm^{-2} s^{-1} during a 10~day span in 1995 July. The inferred peak isotropic luminosity of the source therefore exceeded 3 10^{39} ergs s^{-1}, which places the source in the class of ultra-luminous X-ray sources. Coherent pulsations at 13.264 Hz are detected during a second bright episode (F_X >3 times 10^{-13} ergs cm^{-2} s^{-1}) in 1999 December. The source is detected and varies significantly within three additional observations but is below the detection threshold in 7 observations. The X-ray spectrum in 1999 December is best described as a cut-off power law or a disk-blackbody (multi-colored disk). We also detect an optical source, m_F555W ~ 24.1 mag, within the Chandra error circle of 1RXH J132519.8-430312 in HST images taken 195~days before the nearest X-ray observation. The optical brightness of this source is consistent with a late O or early B star at the distance of Cen A. If the optical source is the counterpart, then the X-ray and optical behavior of 1RXH J132519.8-430312 are similar to the transient Be/X-ray pulsar A 0538-66.Comment: 7 pages, 8 figures. ApJ (accepted

    XMM-Newton observations of two black hole X-ray transients in quiescence

    Get PDF
    We report on XMM-Newton observations of GRO J1655-40 and GRS 1009-45, which are two black hole X-ray transients currently in their quiescent phase. GRO J1655-40 was detected with a 0.5 - 10 keV luminosity of 5.9 10^{31} erg/s. This luminosity is comparable to a previous Chandra measurement, but ten times lower than the 1996 ASCA value, most likely obtained when the source was not yet in a true quiescent state. Unfortunately, XMM-Newton failed to detect GRS 1009-45. A stringent upper limit of 8.9 10^{30} erg/s was derived by combining data from the EPIC-MOS and PN cameras. The X-ray spectrum of GRO J1655-40 is very hard as it can be fitted with a power law model of photon index ~ 1.3 +/- 0.4. Similarly hard spectra have been observed from other systems; these rule out coronal emission from the secondary or disk flares as the origin of the observed X-rays. On the other hand, our observations are consistent with the predictions of the disc instability model in the case that the accretion flow forms an advection dominated accretion flow (ADAF) at distances less than a fraction ~ 0.1 - 0.3) of the circularization radius. This distance corresponds to the greatest extent of the ADAF that is thought to be possible.Comment: 6 pages, 4 figures. Submitted to Astronomy and Astrophysic

    ASCA Observations of the Jet Source XTE J1748-288

    Full text link
    XTE J1748-288 is a new X-ray transient with a one-sided radio jet. It was observed with ASCA on 1998/09/06 and 1998/09/26, 100 days after the onset of the radio-X-ray outburst. The spectra were fitted with an attenuated power-law model, and the 2-6-keV flux was 4.6 * 10^{-11} erg s^{-1} cm^{-2} and 2.2 * 10^{-12} on 09/06 and 09/26, respectively. The light curve showed that the steady exponential decay with an e-folding time of 14 days lasted over 100 days and 4 orders of magnitude from the peak of the outburst. The celestial region including the source had been observed with ASCA on 1993/10/01 and 1994/09/22, years before the discovery. In those period, the flux was < 10^{-13} erg s^{-1} cm^{-2}, below ASCA's detection limit. The jet blob colliding to the environmental matter was supposedly not the X-ray source, although the emission mechanism has not been determined. A possible detection of a K line from highly ionized iron is discussed.Comment: 11 pages, 4 figures, submitted to ApJL. Fig2 is replaced with correct on
    • 

    corecore