86 research outputs found

    Pregnancy Medicaid Expansions and Fertility: Differentiating between the Intensive and Extensive Margins

    Get PDF
    The theoretical and empirical links between public health insurance access and fertility in the United States remain unclear. Utilizing a demographic cell-based estimation approach with panel data (1987-1997), we revisit the large-scale Medicaid expansions to pregnant women during the 1980s to estimate the heterogeneous impacts of public health insurance access on childbirth. While the decision to become a parent (i.e., the extensive margin) appears to be unaffected by increased access to Medicaid, we find that increased access to public health insurance positively influenced the number of high parity births (i.e., the intensive margin) for select groups of women. In particular, we find a robust, positive birth effect for unmarried women with a high school education, a result which is consistent across the two racial groups examined in our analysis: African American and white women. This result suggests that investigating effects along both the intensive and extensive margin is important for scholars who study the natalist effects of social welfare policies, and our evidence provides a more nuanced understanding of the influence of public health insurance on fertility

    Microfluidic systems for the analysis of the viscoelastic fluid flow phenomena in porous media

    Get PDF
    In this study, two microfluidic devices are proposed as simplified 1-D microfluidic analogues of a porous medium. The objectives are twofold: firstly to assess the usefulness of the microchannels to mimic the porous medium in a controlled and simplified manner, and secondly to obtain a better insight about the flow characteristics of viscoelastic fluids flowing through a packed bed. For these purposes, flow visualizations and pressure drop measurements are conducted with Newtonian and viscoelastic fluids. The 1-D microfluidic analogues of porous medium consisted of microchannels with a sequence of contractions/ expansions disposed in symmetric and asymmetric arrangements. The real porous medium is in reality, a complex combination of the two arrangements of particles simulated with the microchannels, which can be considered as limiting ideal configurations. The results show that both configurations are able to mimic well the pressure drop variation with flow rate for Newtonian fluids. However, due to the intrinsic differences in the deformation rate profiles associated with each microgeometry, the symmetric configuration is more suitable for studying the flow of viscoelastic fluids at low De values, while the asymmetric configuration provides better results at high De values. In this way, both microgeometries seem to be complementary and could be interesting tools to obtain a better insight about the flow of viscoelastic fluids through a porous medium. Such model systems could be very interesting to use in polymer-flood processes for enhanced oil recovery, for instance, as a tool for selecting the most suitable viscoelastic fluid to be used in a specific formation. The selection of the fluid properties of a detergent for cleaning oil contaminated soil, sand, and in general, any porous material, is another possible application

    Autosomal dominant craniometaphyseal dysplasia is caused by mutations in the transmembrane protein ANK

    Get PDF
    Craniometaphyseal dysplasia (CMD) is a rare skeletal disorder characterized by progressive thickening and increased mineral density of craniofacial bones and abnormally developed metaphyses in long bones. Linkage studies mapped the locus for the autosomal dominant form of CMD to an similar to5-cM interval on chromosome 5p, which is defined by recombinations between loci D5S810 and D5S1954. Mutational analysis of positional candidate genes was performed, and we describe herein three different mutations, in five different families and in isolated cases, in ANK, a multipass transmembrane protein involved in the transport of intracellular pyrophosphate into extracellular matrix. the mutations are two in-frame deletions and one in-frame insertion caused by a splicing defect. All mutations cluster within seven amino acids in one of the six possible cytosolic domains of ANK. These results suggest that the mutated protein has a dominant negative effect on the function of ANK, since reduced levels of pyrophosphate in bone matrix are known to increase mineralization.Harvard Sch Dent Med, Forsyth Inst, Harvard Forsyth Dept Oral Biol, Boston, MA 02115 USAHarvard Univ, Sch Med, Childrens Hosp, Dept Cell Biol, Boston, MA USAHarvard Univ, Sch Med, Childrens Hosp, Dept Genet, Boston, MA USAHarvard Univ, Sch Med, Childrens Hosp, Div Plast Surg, Boston, MA USAUniversidade Federal de São Paulo, EPM, Campinas, SP, BrazilInst Cirurg Plast Craniofacial SOBRAPAR, Campinas, SP, BrazilShowa Univ, Sch Med, Dept Plast & Reconstruct Surg, Tokyo 142, JapanVirginia Commonwealth Univ, Med Coll Virginia, Dept Human Genet, Richmond, VA 23298 USASt Louis Univ, Sch Med, Cardinal Glennon Childrens Hosp, Div Med Genet, St Louis, MO 63104 USAUniv Cape Town, Sch Med, Dept Human Genet, ZA-7925 Cape Town, South AfricaOhio State Univ, Coll Dent, Dept Orthodont, Columbus, OH 43210 USAChildrens Hosp, Dept Genet, Columbus, OH 43205 USAUniv Minnesota, Sch Dent, Dept Oral Biol & Genet, Minneapolis, MN 55455 USAUniversidade Federal de São Paulo, EPM, Campinas, SP, BrazilWeb of Scienc

    Bone metabolic activity in hyperostosis cranialis interna measured with 18F-fluoride PET

    Get PDF
    F-18-Fluoride PET/CT is a relatively undervalued diagnostic test to measure bone metabolism in bone diseases. Hyperostosis cranialis interna (HCI) is a (hereditary) bone disease characterised by endosteal hyperostosis and osteosclerosis of the skull and the skull base. Bone overgrowth causes entrapment and dysfunction of several cranial nerves. The aim of this study is to compare standardised uptake values (SUVs) at different sites in order to quantify bone metabolism in the affected anatomical regions in HCI patients. Nine affected family members, seven non-affected family members and nine non-HCI non-family members underwent F-18-fluoride PET/CT scans. SUVs were systematically measured in the different regions of interest: frontal bone, sphenoid bone, petrous bone and clivus. Moreover, the average F-18-fluoride uptake in the entire skull was measured by assessing the uptake in axial slides. Visual assessment of the PET scans of affected individuals was performed to discover the process of disturbed bone metabolism in HCI. F-18-Fluoride uptake is statistically significantly higher in the sphenoid bone and clivus regions of affected family members. Visual assessment of the scans of HCI patients is relevant in detecting disease severity and the pattern of disturbed bone metabolism throughout life. F-18-Fluoride PET/CT is useful in quantifying the metabolic activity in HCI and provides information about the process of disturbed bone metabolism in this specific disorder. Limitations are a narrow window between normal and pathological activity and the influence of age. This study emphasises that F-18-fluoride PET/CT may also be a promising diagnostic tool for other metabolic bone disorders, even those with an indolent course

    Sclerostin: Current Knowledge and Future Perspectives

    Get PDF
    In recent years study of rare human bone disorders has led to the identification of important signaling pathways that regulate bone formation. Such diseases include the bone sclerosing dysplasias sclerosteosis and van Buchem disease, which are due to deficiency of sclerostin, a protein secreted by osteocytes that inhibits bone formation by osteoblasts. The restricted expression pattern of sclerostin in the skeleton and the exclusive bone phenotype of good quality of patients with sclerosteosis and van Buchem disease provide the basis for the design of therapeutics that stimulate bone formation. We review here current knowledge of the regulation of the expression and formation of sclerostin, its mechanism of action, and its potential as a bone-building treatment for patients with osteoporosis

    Once the shovel hits the ground : Evaluating the management of complex implementation processes of public-private partnership infrastructure projects with qualitative comparative analysis

    Get PDF
    Much attention is being paid to the planning of public-private partnership (PPP) infrastructure projects. The subsequent implementation phase – when the contract has been signed and the project ‘starts rolling’ – has received less attention. However, sound agreements and good intentions in project planning can easily fail in project implementation. Implementing PPP infrastructure projects is complex, but what does this complexity entail? How are projects managed, and how do public and private partners cooperate in implementation? What are effective management strategies to achieve satisfactory outcomes? This is the fi rst set of questions addressed in this thesis. Importantly, the complexity of PPP infrastructure development imposes requirements on the evaluation methods that can be applied for studying these questions. Evaluation methods that ignore complexity do not create a realistic understanding of PPP implementation processes, with the consequence that evaluations tell us little about what works and what does not, in which contexts, and why. This hampers learning from evaluations. What are the requirements for a complexity-informed evaluation method? And how does qualitative comparative analysis (QCA) meet these requirements? This is the second set of questions addressed in this thesis
    corecore