1,110 research outputs found

    Adsorption Behavior of n-Hexanol on Ag(lll) from Aqueous 0.05 M KCIO4

    Get PDF

    The entropy of randomized network ensembles

    Full text link
    Randomized network ensembles are the null models of real networks and are extensivelly used to compare a real system to a null hypothesis. In this paper we study network ensembles with the same degree distribution, the same degree-correlations or the same community structure of any given real network. We characterize these randomized network ensembles by their entropy, i.e. the normalized logarithm of the total number of networks which are part of these ensembles. We estimate the entropy of randomized ensembles starting from a large set of real directed and undirected networks. We propose entropy as an indicator to assess the role of each structural feature in a given real network.We observe that the ensembles with fixed scale-free degree distribution have smaller entropy than the ensembles with homogeneous degree distribution indicating a higher level of order in scale-free networks.Comment: (6 pages,1 figure,2 tables

    Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of <it>Plasmodium falciparum </it>CK2 (PfCK2) are unknown. The parasite's genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2.</p> <p>Results</p> <p>We now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α <it>in vitro</it>.</p> <p>Conclusions</p> <p>Our reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.</p

    Laue Lens Development for Hard X-rays (>60 keV)

    Full text link
    Results of reflectivity measurements of mosaic crystal samples of Cu (111) are reported. These tests were performed in the context of a feasibility study of a hard X-ray focusing telescope for space astronomy with energy passband from 60 to 600 keV. The technique envisaged is that of using mosaic crystals in transmission configuration that diffract X-rays for Bragg diffraction (Laue lens). The Laue lens assumed has a spherical shape with focal length ff. It is made of flat mosaic crystal tiles suitably positioned in the lens. The samples were grown and worked for this project at the Institute Laue-Langevin (ILL) in Grenoble (France), while the reflectivity tests were performed at the X-ray facility of the Physics Department of the University of Ferrara.Comment: 6 pages, 12 figures, accepted for publication in IEEE Transactions on Nuclear Scienc

    Soil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing

    Get PDF
    The effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and to compare these effects with those of soil properties and plant composition or biomass. Controlled treatments simulating the three factors were applied in a fenced area including a light gradient (sunny and shady situation): (i) repeated mowing; (ii) trampling; (iii) fertilizing with a liquid mixture of dung and urine. In the third year of the experiment, community level physiological profiles (CLPP) (Biolog Ecoplates™) were measured for each plots. Furthermore soil chemical properties (pH, total organic carbon, total nitrogen and total phosphorus), plant species composition and plant biomass were also assessed. Despite differences in plant communities and soil properties, the metabolic potential of the microbial community in the sunny and in the shady situations were similar. Effects of treatments on microbial communities were more pronounced in the sunny than in the shady situation. In both cases, repeated mowing was the first factor retained for explaining functional variations. In contrast, fertilizing was not a significant factor. The vegetation explained a high proportion of variation of the microbial community descriptors in the sunny situation, while no significant variation appeared under shady condition. The three components of cattle activities influenced differently the soil microbial communities and this depended on the light conditions within the wooded pasture. Cattle activities may also change spatially at a fine scale and short-term and induce changes in the microbial community structure. Thus, the shifting mosaic that has been described for the vegetation of pastures may also apply for below-ground microbial communitie

    Modelling Vector Transmission and Epidemiology of Co-Infecting Plant Viruses.

    Get PDF
    Co-infection of plant hosts by two or more viruses is common in agricultural crops and natural plant communities. A variety of models have been used to investigate the dynamics of co-infection which track only the disease status of infected and co-infected plants, and which do not explicitly track the density of inoculative vectors. Much less attention has been paid to the role of vector transmission in co-infection, that is, acquisition and inoculation and their synergistic and antagonistic interactions. In this investigation, a general epidemiological model is formulated for one vector species and one plant species with potential co-infection in the host plant by two viruses. The basic reproduction number provides conditions for successful invasion of a single virus. We derive a new invasion threshold which provides conditions for successful invasion of a second virus. These two thresholds highlight some key epidemiological parameters important in vector transmission. To illustrate the flexibility of our model, we examine numerically two special cases of viral invasion. In the first case, one virus species depends on an autonomous virus for its successful transmission and in the second case, both viruses are unable to invade alone but can co-infect the host plant when prevalence is high

    Lysozyme-induced transcriptional regulation of tnf-\u3b1 pathway genes in cells of the monocyte lineage

    Get PDF
    Lysozyme is one of the most important anti-bacterial effectors in the innate immune system of animals. Besides its direct antibacterial enzymatic activity, lysozyme displays other biological properties, pointing toward a significant anti-inflammatory effect, many aspects of which are still elusive. Here we investigate the perturbation of gene expression profiles induced by lysozyme in a monocyte cell line in vitro considering a perspective as broad as the whole transcriptome profiling. The results of the RNA-seq experiment show that lysozyme induces transcriptional modulation of the TNF-\u3b1/IL-1\u3b2 pathway genes in U937 monocytes. The analysis of transcriptomic profiles with IPA\uae identified a simple but robust molecular network of genes, in which the regulation trends are fully consistent with the anti-inflammatory activity of lysozyme. This study provides the first evidence in support of the anti-inflammatory action of lysozyme on the basis of transcriptomic regulation data resulting from the broad perspective of a whole-transcriptome profiling. Such important effects can be achieved with the supplementation of relatively low concentrations of lysozyme, for a short time of exposure. These new insights allow the potential of lysozyme in pharmacological applications to be better exploited

    Exploring the Hard X-/soft gamma-ray Continuum Spectra with Laue Lenses

    Full text link
    The history of X-ray astronomy has shown that any advancement in our knowledge of the X-ray sky is strictly related to an increase in instrument sensitivity. At energies above 60 keV, there are interesting prospects for greatly improving the limiting sensitivity of the current generation of direct viewing telescopes (with or without coded masks), offered by the use of Laue lenses. We will discuss below the development status of a Hard X-Ray focusing Telescope (HAXTEL) based on Laue lenses with a broad bandpass (from 60 to 600 keV) for the study of the X-ray continuum of celestial sources. We show two examplesof multi-lens configurations with expected sensitivity orders of magnitude better (1×108\sim 1 \times 10^{-8} photons cm2^{-2} s1^{-1} keV1^{-1} at 200 keV) than that achieved so far. With this unprecedented sensitivity, very exciting astrophysical prospects are opened.Comment: 4 pages, 10 figures, to be published in the Proc. of the 39th ESLAB Symosium, 19-21 April 200

    Spatial Genetic Structure of a Symbiotic Beetle-Fungal System: Toward Multi-Taxa Integrated Landscape Genetics

    Get PDF
    Spatial patterns of genetic variation in interacting species can identify shared features that are important to gene flow and can elucidate co-evolutionary relationships. We assessed concordance in spatial genetic variation between the mountain pine beetle (Dendroctonus ponderosae) and one of its fungal symbionts, Grosmanniaclavigera, in western Canada using neutral genetic markers. We examined how spatial heterogeneity affects genetic variation within beetles and fungi and developed a novel integrated landscape genetics approach to assess reciprocal genetic influences between species using constrained ordination. We also compared landscape genetic models built using Euclidean distances based on allele frequencies to traditional pair-wise Fst. Both beetles and fungi exhibited moderate levels of genetic structure over the total study area, low levels of structure in the south, and more pronounced fungal structure in the north. Beetle genetic variation was associated with geographic location while that of the fungus was not. Pinevolume and climate explained beetle genetic variation in the northern region of recent outbreak expansion. Reciprocal genetic relationships were only detectedin the south where there has been alonger history of beetle infestations. The Euclidean distance and Fst-based analyses resulted in similar models in the north and over the entire study area, but differences between methods in the south suggest that genetic distances measures should be selected based on ecological and evolutionary contexts. The integrated landscape genetics framework we present is powerful, general, and can be applied to other systems to quantify the biotic and abiotic determinants of spatial genetic variation within and among taxa
    corecore