10,071 research outputs found

    Vocal Classification of Vocalizations of a Pair of Asian Small-Clawed Otters to Determine Stress

    Get PDF
    Asian Small-Clawed Otters (Aonyx cinerea) are a small, protected but threatened species living in freshwater. They are gregarious and live in monogamous pairs for their lifetimes, communicating via scent and acoustic vocalizations. This study utilized a hidden Markov model (HMM) to classify stress versus non-stress calls from a sibling pair under professional care. Vocalizations were expertly annotated by keepers into seven contextual categories. Four of these—aggression, separation anxiety, pain, and prefeeding—were identified as stressful contexts, and three of them—feeding, training, and play—were identified as non-stressful contexts. The vocalizations were segmented, manually categorized into broad vocal type call types, and analyzed to determine signal to noise ratios. From this information, vocalizations from the most common contextual categories were used to implement HMM-based automatic classification experiments, which included individual identification, stress vs non-stress, and individual context classification. Results indicate that both individual identity and stress vs non-stress were distinguishable, with accuracies above 90%, but that individual contexts within the stress category were not easily separable

    Optimization of Single-Sided Charge-Sharing Strip Detectors

    Get PDF
    Simulation of the charge sharing properties of single-sided CZT strip detectors with small anode pads are presented. The effect of initial event size, carrier repulsion, diffusion, drift, trapping and detrapping are considered. These simulations indicate that such a detector with a 150 µm pitch will provide good charge sharing between neighboring pads. This is supported by a comparison of simulations and measurements for a similar detector with a coarser pitch of 225 µm that could not provide sufficient sharing. The performance of such a detector used as a gamma-ray imager is discussed

    Further studies of single-sided charge-sharing CZT strip detectors

    Get PDF
    We report progress in the study of a thick CZT strip detector module designed to perform gamma-ray spectroscopy and 3-D imaging. We report preliminary performance measurements of 7.5 mm thick single-sided charge-sharing strip detector prototype devices. This design features both row and column contacts on the anode surface. This electron-only approach addresses problems associated with poor hole transport in CZT that limit the thickness and energy range of double-sided strip detectors. This work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA Black Hole Finder Probe (BHFP)and Advanced Compton Telescope (ACT). This new design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125 μm anode contacts on 225 μm pitch. Our results demonstrate the principle of operation but suggest that even finer anode contact feature sizes will be necessary to achieve the desired performance

    Continued Studies of Single-Sided Charge-Sharing CZT Strip Detectors

    Get PDF
    In this paper, we report progress in the study of thick single-sided charge-sharing cadmium zinc telluride (CZT) strip detector modules designed to perform gammaray spectroscopy and 3-D imaging. We report on continuing laboratory and simulation measurements of prototype detectors with 11×11 unit cells (15×15×7.5mm3 ). We report preliminary measurements of the 3-D spatial resolution. Our studies are aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA’s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT). This design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125µm anode contacts on 225µm pitch. Our studies conclude that finer pitch contacts will be required to improve imaging efficiency

    Single-sided CZT strip detectors

    Get PDF
    We report progress in the study of thick CZT strip detectors for 3-d imaging and spectroscopy and discuss two approaches to device design. We present the spectroscopic, imaging, detection efficiency and response uniformity performance of prototype devices. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. These devices can achieve similar performance to pixel detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements. The low channel count strip detector approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in space-based coded aperture or Compton telescope instruments requiring large area, large volume detector arrays. Such arrays will be required for NASA\u27s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT)

    The development of a position-sensitive CZT detector with orthogonal co-planar anode strips

    Get PDF
    We report on the simulation, construction, and performance of prototype CdZnTe imaging detectors with orthogonal coplanar anode strips. These detectors employ a novel electrode geometry with non-collecting anode strips in one dimension and collecting anode pixels, interconnected in rows, in the orthogonal direction. These detectors retain the spectroscopic and detection efficiency advantages of single carrier (electron) sensing devices as well as the principal advantage of conventional strip detectors with orthogonal anode and cathode strips, i.e. an N×N array of imaging pixels are with only 2N electronic channels. Charge signals induced on the various electrodes of a prototype detector with 8×8 unit cells (1×1×5 mm3)are compared to the simulations. Results of position and energy resolution measurements are presented and discussed

    Spectral stochastic processes arising in quantum mechanical models with a non-L2 ground state

    Full text link
    A functional integral representation is given for a large class of quantum mechanical models with a non--L2 ground state. As a prototype the particle in a periodic potential is discussed: a unique ground state is shown to exist as a state on the Weyl algebra, and a functional measure (spectral stochastic process) is constructed on trajectories taking values in the spectrum of the maximal abelian subalgebra of the Weyl algebra isomorphic to the algebra of almost periodic functions. The thermodynamical limit of the finite volume functional integrals for such models is discussed, and the superselection sectors associated to an observable subalgebra of the Weyl algebra are described in terms of boundary conditions and/or topological terms in the finite volume measures.Comment: 15 pages, Plain Te
    • …
    corecore