9,232 research outputs found
Optimization of Single-Sided Charge-Sharing Strip Detectors
Simulation of the charge sharing properties of single-sided CZT strip detectors with small anode pads are presented. The effect of initial event size, carrier repulsion, diffusion, drift, trapping and detrapping are considered. These simulations indicate that such a detector with a 150 µm pitch will provide good charge sharing between neighboring pads. This is supported by a comparison of simulations and measurements for a similar detector with a coarser pitch of 225 µm that could not provide sufficient sharing. The performance of such a detector used as a gamma-ray imager is discussed
Further studies of single-sided charge-sharing CZT strip detectors
We report progress in the study of a thick CZT strip detector module designed to perform gamma-ray spectroscopy and 3-D imaging. We report preliminary performance measurements of 7.5 mm thick single-sided charge-sharing strip detector prototype devices. This design features both row and column contacts on the anode surface. This electron-only approach addresses problems associated with poor hole transport in CZT that limit the thickness and energy range of double-sided strip detectors. This work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA Black Hole Finder Probe (BHFP)and Advanced Compton Telescope (ACT). This new design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125 μm anode contacts on 225 μm pitch. Our results demonstrate the principle of operation but suggest that even finer anode contact feature sizes will be necessary to achieve the desired performance
Continued Studies of Single-Sided Charge-Sharing CZT Strip Detectors
In this paper, we report progress in the study of thick single-sided charge-sharing cadmium zinc telluride (CZT) strip detector modules designed to perform gammaray spectroscopy and 3-D imaging. We report on continuing laboratory and simulation measurements of prototype detectors with 11×11 unit cells (15×15×7.5mm3 ). We report preliminary measurements of the 3-D spatial resolution. Our studies are aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma measurements while minimizing the number and complexity of the electronic readout channels. This is particularly important in space-based coded aperture and Compton telescope instruments that require large area, large volume detector arrays. Such arrays will be required for the NASA’s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT). This design requires an anode pattern with contacts whose dimensions and spacing are roughly the size of the ionization charge cloud. The first prototype devices have 125µm anode contacts on 225µm pitch. Our studies conclude that finer pitch contacts will be required to improve imaging efficiency
Single-sided CZT strip detectors
We report progress in the study of thick CZT strip detectors for 3-d imaging and spectroscopy and discuss two approaches to device design. We present the spectroscopic, imaging, detection efficiency and response uniformity performance of prototype devices. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. These devices can achieve similar performance to pixel detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements. The low channel count strip detector approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in space-based coded aperture or Compton telescope instruments requiring large area, large volume detector arrays. Such arrays will be required for NASA\u27s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT)
Spectral stochastic processes arising in quantum mechanical models with a non-L2 ground state
A functional integral representation is given for a large class of quantum
mechanical models with a non--L2 ground state. As a prototype the particle in a
periodic potential is discussed: a unique ground state is shown to exist as a
state on the Weyl algebra, and a functional measure (spectral stochastic
process) is constructed on trajectories taking values in the spectrum of the
maximal abelian subalgebra of the Weyl algebra isomorphic to the algebra of
almost periodic functions. The thermodynamical limit of the finite volume
functional integrals for such models is discussed, and the superselection
sectors associated to an observable subalgebra of the Weyl algebra are
described in terms of boundary conditions and/or topological terms in the
finite volume measures.Comment: 15 pages, Plain Te
Single-sided CZT strip detectors
We report progress in the study of thick CZT strip detectors for 3-D imaging and spectroscopy and discuss two approaches to device design. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements while minimizing the number and complexity of the electronic readout channels. These devices can achieve similar performance to pixel detectors for both 3-D imaging and spectroscopy. The low channel count approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in applications requiring large area detector arrays. We show two single-sided strip detector concepts. One, previously reported, features rows established with collecting contacts and columns with noncollecting contacts. Another, introduced here, operates on a charge sharing principle and establishes both rows and columns with collecting contacts on the anode surface. In previous work using the earlier strip detector concept we reported simulations and measurements of energy and spatial resolution for prototype 5- and 10-mm-thick CZT detectors. We now present the results of detection efficiency and uniformity measurements conducted on 5-mm-thick detectors using a specific configuration of the front-end electronics and event trigger. We discuss the importance of the detector fabrication processes when implementing this approach
Development of CZT strip detector modules for 0.05- to 1-MeV gamma-ray imaging and spectroscopy
We report progress in our study of cadmium zinc telluride (CZT) strip detectors featuring orthogonal coplanar anode contacts. We specifically report on the performance, characterization and stability of 5 and 10 mm thick prototype CZT detectors fabricated using material from several manufacturers. Our ongoing work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements with space-based instrumentation. The coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. Minimizing the channel count is important for large balloon or space instruments including coded aperture telescopes (such as MARGIE or EXIST) and Compton imaging telescopes (such as TIGRE or ACT). We also present plans for developing compact, space qualified imaging modules designed for integration into closely packed large area detector arrays. We discuss issues associated with detector module and array electronics design and development
Readout and performance of thick CZT strip detectors with orthogonal coplanar anodes
We report progress in the study of CZT strip detectors featuring orthogonal coplanar anode contacts. The work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements. The novel coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. We report on studies aimed at determining an optimum configuration of the analog signal processing electronics to employ with these detectors. We report measurements of energy and spatial resolution in three dimensions for prototype 5 and 10 mm thick CZT detectors using a set of shaping and summing amplifiers
Symmetry of Traveling Wave Solutions to the Allen-Cahn Equation in \Er^2
In this paper, we prove even symmetry of monotone traveling wave solutions to
the balanced Allen-Cahn equation in the entire plane. Related results for the
unbalanced Allen-Cahn equation are also discussed
Forecasting the quality of AMF communities
Non-Peer Reviewe
- …