289 research outputs found

    Degravitation, Inflation and the Cosmological Constant as an Afterglow

    Full text link
    In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation-- where Netwon's constant is promoted to a scale dependent filter function-- as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant `afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (LL) in Planck units Λ∼lpl2/L2\Lambda \sim l^2_{pl}/L^2. We discuss circumstances through which this scenario reasonably yields the presently observed value for Λ∼O(10−120)\Lambda \sim O(10^{-120}). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale.Comment: To appear in JCAP; sections discussing degravitation as a semi-classical effect and the modified Bianchi identities adde

    Polarization Effects on the e+e−→W+W−e+e- \to W^+W^- process with Large Extra Dimensions

    Full text link
    We study large extra dimension effects on the polarizations of the WW pair and electron beam at the e+e−→W+W−e^+ e^-\to W^+ W^- process. It is shown that the measurements of the cross section for transversely polarized WW pair with the right-handed electron beam remarkably enhance the possibilities to see the low scale quantum gravity effects. Higher Linear Collider bounds on the string scale in this model can be obtained by using the left-handed electron beam.Comment: Final version to appear in Phys.Lett.B. More references are adde

    Dynamic Dilatonic Domain Walls

    Get PDF
    Motivated by the ``universe as a brane'' idea, we investigate the motion of a (D−2)(D-2)-brane (or domain wall) that couples to bulk matter. Usually one would expect the spacetime outside such a wall to be time dependent however we show that in certain cases it can be static, with consistency of the Israel equations yielding relationships between the bulk metric and matter that can be used as ans\"atze to solve the Einstein equations. As a concrete model we study a domain wall coupled to a bulk dilaton with Liouville potentials for the dilaton both in the bulk and on the wall. The bulk solutions we find are all singular but some have black hole or cosmological horizons, beyond which our solutions describe domain walls moving in time dependent bulks. A significant period of world volume inflation occurs if the potential on the wall is not too steep; in some cases the bulk also inflates (with the wall comoving) while in others the wall moves relative to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space. tive to a non-inflating bulk. We apply our method to obtain cosmological solutions of Ho\v{r}ava-Witten theory compactified on a Calabi-Yau space.Comment: 32 pages LaTeX, 5 .eps figures, corrected some typo

    Ghost Condensation and a Consistent Infrared Modification of Gravity

    Full text link
    We propose a theoretically consistent modification of gravity in the infrared, which is compatible with all current experimental observations. This is an analog of Higgs mechanism in general relativity, and can be thought of as arising from ghost condensation--a background where a scalar field \phi has a constant velocity, = M^2. The ghost condensate is a new kind of fluid that can fill the universe, which has the same equation of state, \rho = -p, as a cosmological constant, and can hence drive de Sitter expansion of the universe. However, unlike a cosmological constant, it is a physical fluid with a physical scalar excitation, which can be described by a systematic effective field theory at low energies. The excitation has an unusual low-energy dispersion relation \omega^2 \sim k^4 / M^2. If coupled to matter directly, it gives rise to small Lorentz-violating effects and a new long-range 1/r^2 spin dependent force. In the ghost condensate, the energy that gravitates is not the same as the particle physics energy, leading to the possibility of both sources that can gravitate and antigravitate. The Newtonian potential is modified with an oscillatory behavior starting at the distance scale M_{Pl}/M^2 and the time scale M_{Pl}^2/M^3. This theory opens up a number of new avenues for attacking cosmological problems, including inflation, dark matter and dark energy.Comment: 42 pages, LaTeX 2

    SensiBlend: Sensing blended experiences in professional and social contexts

    Get PDF
    Unlike traditional workshops, SensiBlend is a living experiment about the future of remote, hybrid, and blended experiences within professional and other social contexts. The interplay of interpersonal relationships with tools and spaces-digital and physical-has been abruptly challenged and fundamentally altered as a result of the COVID-19 pandemic. With this meta-workshop, we seek to scrutinize and advance the role and impact of Ubiquitous Computing in the new "blended"social reality, and raise questions relating to the specific attributes of socio-Technical experiences in the future organization of interpersonal relationships. How do we better equip people to deal with blended experiences? What dimensions of socio-Technical experiences are at stake? To this end, we will utilize the occasion of a virtual UbiComp in combination with novel remote-working tools and participatory sensing with attendees to collectively examine, discuss, and elicit the potential routes of augmenting social practices in a discourse about the future of blended working, socializing, and living

    Stationary Einstein-Maxwell fields in arbitrary dimensions

    Full text link
    The Einstein-Maxwell equations in D-dimensions admitting (D-3) commuting Killing vector fields have been investigated. The existence of the electric, magnetic and twist potentials have been proved. The system is formulated as the harmonic map coupled to gravity on three-dimensional base space generalizing the Ernst system in the four-dimensional stationary Einstein-Maxwell theory. Some classes of the new exact solutions have been provided, which include the electro-magnetic generalization of the Myers-Perry solution, which describes the rotating black hole immersed in a magnetic universe, and the static charged black ring solution.Comment: 26 page

    Spatial infinity in higher dimensional spacetimes

    Full text link
    Motivated by recent studies on the uniqueness or non-uniqueness of higher dimensional black hole spacetime, we investigate the asymptotic structure of spatial infinity in n-dimensional spacetimes(n≥4n \geq 4). It turns out that the geometry of spatial infinity does not have maximal symmetry due to the non-trivial Weyl tensor {}^{(n-1)}C_{abcd} in general. We also address static spacetime and its multipole moments P_{a_1 a_2 ... a_s}. Contrasting with four dimensions, we stress that the local structure of spacetimes cannot be unique under fixed a multipole moments in static vacuum spacetimes. For example, we will consider the generalized Schwarzschild spacetimes which are deformed black hole spacetimes with the same multipole moments as spherical Schwarzschild black holes. To specify the local structure of static vacuum solution we need some additional information, at least, the Weyl tensor {}^{(n-2)}C_{abcd} at spatial infinity.Comment: 6 pages, accepted for publication in Physical Review D, published versio

    Constraints on Large Extra Dimensions with Bulk Neutrinos

    Full text link
    We consider right-handed neutrinos propagating in δ\delta (large) extra dimensions, whose only coupling to Standard Model fields is the Yukawa coupling to the left-handed neutrino and the Higgs boson. These theories are attractive as they can explain the smallness of the neutrino mass, as has already been shown. We show that if δ\delta is bigger than two, there are strong constraints on the radius of the extra dimensions, resulting from the experimental limit on the probability of an active state to mix into the large number of sterile Kaluza-Klein states of the bulk neutrino. We also calculate the bounds on the radius resulting from requiring that perturbative unitarity be valid in the theory, in an imagined Higgs-Higgs scattering channel.Comment: 24 pages, 4 figures, revtex4. v2: Minor typos corrected, references adde

    Scaling solution, radion stabilization, and initial condition for brane-world cosmology

    Full text link
    We propose a new, self-consistent and dynamical scenario which gives rise to well-defined initial conditions for five-dimensional brane-world cosmologies with radion stabilization. At high energies, the five-dimensional effective theory is assumed to have a scale invariance so that it admits an expanding scaling solution as a future attractor. The system automatically approaches the scaling solution and, hence, the initial condition for the subsequent low-energy brane cosmology is set by the scaling solution. At low energies, the scale invariance is broken and a radion stabilization mechanism drives the dynamics of the brane-world system. We present an exact, analytic scaling solution for a class of scale-invariant effective theories of five-dimensional brane-world models which includes the five-dimensional reduction of the Horava-Witten theory, and provide convincing evidence that the scaling solution is a future attractor.Comment: 17 pages; version accepted for PRD, references adde

    The Supersymmetric Standard Models with Decay and Stable Dark Matters

    Get PDF
    We propose two supersymmetric Standard Models (SMs) with decaying and stable dark matter (DM) particles. To explain the SM fermion masses and mixings and have a heavy decay DM particle S, we consider the Froggatt-Nielsen mechanism by introducing an anomalous U(1)_X gauge symmetry. Around the string scale, the U(1)_X gauge symmetry is broken down to a Z_2 symmetry under which S is odd while all the SM particles are even. S obtains a vacuum expectation value around the TeV scale, and then it can three-body decay dominantly to the second/third family of the SM leptons in Model I and to the first family of the SM leptons in Model II. Choosing a benchmark point in the constrained minimal supersymmetric SM with exact R parity, we show that the lightest neutralino DM is consistent with the CDMS II experiment. Considering S three-body decay and choosing suitable parameters, we show that the PAMELA and Fermi-LAT experiments and the PAMELA and ATIC experiments can be explained in Model I and Model II, respectively.Comment: RevTex4, 26 pages, 6 figures, references added, version to appear in EPJ
    • …
    corecore