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Abstract

We propose two supersymmetric Standard Models (SMs) with decaying and stable dark matter

(DM) particles. To explain the SM fermion masses and mixings and have a heavy decay DM

particle S, we consider the Froggatt-Nielsen mechanism by introducing an anomalous U(1)X gauge

symmetry. Around the string scale, the U(1)X gauge symmetry is broken down to a Z2 symmetry

under which S is odd while all the SM particles are even. S obtains a vacuum expectation value

around the TeV scale, and then it can three-body decay dominantly to the second/third family

of the SM leptons in Model I and to the first family of the SM leptons in Model II. Choosing a

benchmark point in the constrained minimal supersymmetric SM with exact R parity, we show that

the lightest neutralino DM is consistent with the CDMS II experiment. Considering S three-body

decay and choosing suitable parameters, we show that the PAMELA and Fermi-LAT experiments

and the PAMELA and ATIC experiments can be explained in Model I and Model II, respectively.
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I. INTRODUCTION

It is well known that supersymmetry privides an elegant solution to gauge hierarchy

problem in the Standard Model (SM). In the Minimal Supersymmetric Standard Model

(MSSM), gauge coupling unification can be realized, which give us the important hint of

Grand Unified Theory (GUT). In addition, in the supersymmetric SMs, we can define a Z2

symmetry called R parity under which the SM particles are even while their supersymmetric

partners are odd. With R parity, we can avoid the dimension-four proton decay problem and

evade the stringent constraints from the electroweak precision data naturally. Interestingly,

the lightest supersymmetric particle (LSP) is stable due to the R parity, and then can be

the dark matter (DM) candidate. For example, the lightest neutralino can be a viable cold

DM candidate, which can give us the correct relic density as well.

During the last two years, there were quite a few very interesting DM experiments from

indirect and direct dections. The ATIC [1] and PPB-BETS [2] collaborations have reported

the measurements of cosmic ray (CR) electron/positron spectra at energies up to ∼ 1 TeV.

These data show an obvious excess over the expected background in the energy ranges

∼ 300 − 800GeV and ∼ 500 − 800GeV, respectively. In the mean time, the PAMELA

collaboration also released their first CR measurements of the positron fraction [3] and the

p̄/p ratio [4]. Although the p̄/p ratio is consistent with the astrophysical expectation from the

interactions between the CR nuclei and interstellar medium, the positron fraction indeed

shows a significant excess for energies above 10GeV up to ∼ 100GeV, compared to the

background predicted by the conventional CR propagation models. Later, the Fermi-LAT

collaboration has released data on the measurement of the electron/positron spectrum from

20 GeV to 1 TeV with unprecedented precision [5], and the HESS collaboration has released

the data on the measurements of electron/positron spectrum from 340 GeV to 700 GeV [6],

complementing their earlier measurements from 700 GeV to 5 TeV [7]. For simplicity, we

will denote the Fermi-LAT collaboration as FERMI collaboration in the following. Although

the corresponding data from the ATIC and the FERMI/HESS experiments are not fully

consistent, it was shown that the DM models, where the DM particles annihilate or decay

dominantly to the SM leptons, can explain these experiments by choosing the suitable DM

particle mass and the proper final state particles.

To explain the PAMELA/ATIC experiments or the PAMELA/FERMI/HESS experi-

ments from DM annihilations, we know that a large boost factor about 100-1000 is needed.

However, from astrophysics, the N-body simulation shows that the boost factor from DM

substructure can never be larger than 10 [8]. To solve this problem, one can consider the

Sommerfield enhancement [9–11] or Breit-Wigner resonant enhancement [12]. Alternatively,

we can also consider the non-thermal dark matter production so that the DM annihilation

2



cross section can be large [13]. In addition, if the DM particle is not absolutely stable and can

decay dominantly to leptons, we can explain these experiments for the DM lifetime at the or-

der τ ∼ 1025−1027s [14–18]. In particular, in the supersymmetric Standard Models, the LSP

neutralino cannot explain the PAMELA/ATIC experiments or the PAMELA/FERMI/HESS

experiments unless it can decay due to the suitable R-parity violation dimension-four op-

erators. Furthermore, to fit the PAMELA and ATIC data via the Markov Chain Monte

Carlo (MCMC) technique, one found that the DM mass is about 700 GeV for annihilation

and 1.4 TeV for decay, and the favored final state is e+e− [19]. And to fit the PAMELA,

FERMI, and HESS data, one found that the DM mass is about 2 TeV for annihilation and

4 TeV for decay, and the favored final states are the combination of µ+µ− and τ+τ− since

the electron/positron spectra in the FERMI and HESS experiments are softer than these

in the ATIC and PPB-BETS experiments [19]. Also, the HESS obervation of the Galactic

center gamma rays gives strong constraint on the annihilation DM scenario while gives much

weaker constraint on the decay DM scenario. Thus, it favors the decay DM [19].

Recently, the Cryogenic Dark Matter Search (CDMS) collaboration has observed two

candidate DM events in the CDMS II experiment [20]. The recoil energies for these two

events are 12.3 keV and 15.5 keV, respectively, and the data set an upper limit on the DM-

nucleon elastic-scattering spin independent cross section around 10−8 − 10−7 pb. Because

the probability of observing two or more background events is 23%, the CDMS II results

cannot be a statistically significant evidence for DM interactions, but these two events can

not be rejected as signal. In particular, the favored DM mass from the CDMS II data is

about 100 GeV. Later, the CDMS II results have been studied extensively in various DM

models [21]. Interestingly, the CDMS II experiment can be explained in the supersymmetric

Standard Models where the LSP neutralino is DM.

In short, if the PAMELA, ATIC, FERMI, and HESS experiments indeed observed the DM

annihilations or decays, the corresponding DM particle is heavy around a few TeVs. And

if the two events observed by the CDMS II experiment are DM signals, the corresponding

DM particle is light around 100 GeV. Therefore, there may exist at least two DM particles

in the Nature. In fact, in almost all the previous DM models, the nearly universal implicit

assumption is that there is one and only one DM particle. However, we cannot prove this

implicit assumption, and then we cannot ingore the possibility of multicomponent DM [22,

23].

In this paper, we propose two supersymmetric Standard Models with decaying and stable

DM particles. To avoid the proton decay problem and evade the stringent constraints from

the electroweak precision data, we assume that R parity is not violated. In our models, we

require that the LSP neutralino be the stable DM particle with mass around 100 GeV and

the LSP neutralino-nucleon scattering cross section be about 10−8 pb. Thus, we can explain
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the CDMS II experiment. We also assume that the supersymmetry breaking scale is still

below 1 TeV, and then we can solve the gauge hierarchy problem without fine-tuning. To

explain the PAMELA, ATIC, and FERMI experiments, we introduce a DM particle S with

mass around a few TeVs. To produce the SM fermion masess and mixings and have the

heavy decay DM particle S, we consider the Froggatt-Nielsen (FN) mechanism [24]. We

introduce an anomalous U(1)X gauge symmetry whose anomaly is cancelled by the Green-

Schwarz mechanism [25]. Especially, the U(1)X gauge symmetry is broken down to the Z2

symmetry around the string scale under which S is odd while all the SM particles are even.

Thus, S can be a DM particle. Similar to the discussions in Refs. [26–29], the SM fermion

masses and mixings can be generated as well. With a pair of heavy vector-like particles

that are SM singlets and have U(1)Y charges ±1 respectively, we obtain that the leading

Yukawa coupling terms between S and the SM particles are S2HdLiE
c
j where Hd is the Higgs

field, and Li and Ec
j are the i-th family of the SM lepton doublet and j-th family of the

right-handed charged lepton, respectively. In Model I, we have (i, j) = (2, 2) and (3, 2),

while in Model II, we have (i, j) = (1, 1). After S obtains a vacuum expectation value

(VEV) at the TeV scale, S can decay dominantly to the second/third family of the SM

leptons via dimension-six operators (three-body decay) in Model I, and to the first family

of the SM leptons in Model II. To realize our idea, we present a benchmark point from the

constrained minimal supersymmetric Stanard Model (CMSSM). The lightest neutralino Ñ0
1

contributes to part of the whole DM relic density, i.e., ΩÑ0
1

h2 ≈ 0.08. The LSP neutralino-

nucleon elastic-scattering spin independent cross section is about 5 × 10−9 pb. Thus, this

benchmark point is consistent with the CDMS II results. In addition, for the S lifetime

about τ ∼ 1025 − 1027s, we can explain the PAMELA, FERMI and CDMS II experiments

in Model I with S mass 3 TeV, and explain the PAMELA, ATIC and CDMS II experiments

in Model II with S mass 1.8 TeV.

The paper is organized as follows. In Section II, we explain the SM fermion masses and

mixings as well as the leading Yukawa terms S2LiHdE
c
j via the FN mechanism. In Section

III, we present a benchmark point in the CMSSM parameter space, and we discuss the

DM particle S three-body cascade decay. We fit the PAMELA and FERMI data and the

PAMELA and ATIC data in Section IV. Section V is our discussion and conclusions. We

present more technical details in Appendices A, B, and C.

II. TWO SUPERSYMMETRIC STANDARD MODELS

In this Section, we will present two supersymmetric Standard Models with decaying and

stable DM particles. To have a decay DM particle, we introduce a SM singlet field S

and a new Z2 symmetry. Under this Z2 symmetry, S is odd while all the SM particles
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are even. Thus, S can be a DM particle. Because the global discrete symmetry can be

broken by the quantum gravity effects, it is natural to have the remnant discrete symmetry

from an extra U(1)′ gauge symmetry [30, 31]. In particular, in the U(1)′-extended Minimal

Supersymmetric Standard Model (UMSSM) [32] where we can solve the µ problem and

avoid proton decay, we indeed have a new DM candidate if the U(1)′ is broken down to a

Z2 symmetry [23, 33].

In our models, this Z2 symmetry is the residual symmetry after the anomalous U(1)X

gauge symmetry breaking, i .e., Z2 is a subgroup of U(1)X . After supersymmetry is broken

at the TeV scale, the supersymmetry breaking soft masses may make m2
S negative and then

the scalar component of S obtains a VEV around the TeV scale. We assume that the

lightest state in the supermultiplet S is its scalar component, which is still denoted by S

in this paper. In short, S is a DM particle which can decay after Z2 symmetry breaking.

In the concrete model building, we may need a singlet sector with additional particles and

interactions for two kinds of reasons: (1) We have to stabilize the VEV of S at the TeV

scale; (2) We need to generate the correct S relic density from thermal productions by

considering the additional U(1)′ gauge symmetry at the TeV scale [23], or from non-thermal

productions by considering the cosmic string at intermediate scale [13] or the extra vector-

like particles at the intermediate scale [16]. Similar to the Ref. [16], we concentrate on the

DM phenomenology in this paper, and then the detailed discussions of the singlet sector and

S relic density are out of the scope of our current paper.

To explain the PAMELA, ATIC, FERMI and HESS experiments, S must decay dom-

inantly to the SM leptons. To select the suitable final state particles, we consider the

Froggatt-Nielsen mechanism [24], which is an elegant way to explain the SM fermion masses

and mixings. We consider an anomalus U(1)X gauge symmetry, whose anomaly can be

cancelled via the Green-Schwarz mechanism [25]. In the string model building, we indeed

have at least one anomalous U(1)X gauge symmetry [29].

To break the U(1)X gauge symmetry, we introduce a flavon field A with U(1)X charge

−1. Because supersymmetry must be preserved close to the string scale, A can acquire a

VEV so that the U(1)X D-flatness can be realized. It was shown [27] that

0.171 ≤ ǫ ≡ 〈A〉
MPl

≤ 0.221 , (1)

whereMPl is the reduced Planck scale. Interestingly, ǫ is about the size of the Cabibbo angle.

Let us explain our convention. We denote the SM left-handed quark doublets, right-handed

up-type quarks, right-handed down-type quarks, left-handed lepton doublets, right-handed

neutrinos, and right-handed charged leptons as Qi, U
c
i , D

c
i , Li, N

c
i , and Ec

i , respectively.

Also, there is one pair of Higgs doublets Hu and Hd in the supersymmetric Standard Models.

Moreover, we introduce a pair of vector-like particles E ′ and E
′
whose quantum numbers
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under SU(3)C × SU(2)L × U(1)Y are (1, 1,−1) and (1, 1, 1), respectively. In addition, the

U(1)X charges for all the particles in our models are denoted by appropriate subscripts, for

example, for a generic particle φ, its U(1)X charge is Xφ. In our models, we choose the

U(1)X charges for the SM fermions and Higgs fields as follows

XQ1
= 3, XQ2

= 2, XQ3
= 0, XUc

1
= 5, XUc

2
= 2, XUc

3
= 0,

XDc
1
= 1, XDc

2
= 0, XDc

3
= 0, XL1

= 1, XL2
= 0, XL3

= 0,

XEc
1
= 3, XEc

2
= 2, XEc

3
= 0, XHu

= 0, XHd
= 0. (2)

The superpotential for the SM fermion Yukawa couplings is

W ⊃
(

A

MPl

)XHu+XQi
+XUc

j

QiHuU
c
j +

(
A

MPl

)XHd
+XQi

+XDc
j

QiHdD
c
j

+

(
A

MPl

)XHd
+XLi

+XEc
j

LiHdE
c
j +

(
A

MPl

)XHu+XLi
+XNc

j

LiHuN
c
j , (3)

where i, j = 1, 2, 3, and all the coefficients are assume to be order one in the above

superpotential. Thus, we obtain the SM fermion Yukawa coupling matrixes Yu, Yd, Ye and

Yν respectively for up-type quarks, down-type quarks, charged leptons and active neutrinos

Yu ∼



ǫ8 ǫ5 ǫ3

ǫ7 ǫ4 ǫ2

ǫ5 ǫ2 1


 , Yd ∼ Y T

e ∼



ǫ5 ǫ4 ǫ4

ǫ4 ǫ3 ǫ3

ǫ2 ǫ1 ǫ1


 , Yν ∼



ǫ2 ǫ ǫ

ǫ 1 1

ǫ 1 1


 , (4)

where T is transpose. We can show that the observed SM fermion masses and mixings can

be generated [27, 29], and tan β = 〈H0
u〉/〈Hd〉0 is 25.

In the Model I, we would like to explain the PAMELA and FERMI experiments. We

choose the following U(1)X charges for S, E ′ and E ′

XS = 3/2, XE′ = −5, XE
′ = 5. (5)

Note that A has U(1)X charge −1, the U(1)X charges for the SM particles are integers, while

the U(1)X charge for S is half integer, thus, the U(1)X gauge symmetry is broken down to a

Z2 symmetry after A obtains a VEV. In particular, under this Z2 symmetry, only S is odd

while all the other SM particles are even. Then the leading Yukawa coupling terms between

S and the SM particles in the superpotential are

W ⊃
(

A

MPl

)5

HdLkE ′ +

(
S2

MPl

)
Ec

2E
′ +MVE ′E ′ , (6)

where k = 2, 3, and MV is the vector-like particle mass around the 1013 GeV. In particu-

lar, the superpotential mass terms Ec
iE

′ and AnEc
iE

′ are forbidden due to the holomorpic
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property of superpotential. Because E ′ and E ′ are heavy, we should integrate them out

below their mass scale. From the above superpotential, we obtain from equations of motion

(EOMs) for E ′ and E ′

E ′ = − HdLk

MV
, E ′ = − S2Ec

2

MVMPl
. (7)

Using the above EOMs for E ′ and E ′, we obtain that the superpotential in Eq. (6) becomes

W ⊃ − ǫ5
(

S2

MPlMV

)
HdLkE

c
2 . (8)

To simplify the discussions, we assume that the coefficient of S2HdL2E
c
2 is about three

times larger than that of S2HdL3E
c
2. Thus, we will concentrate on the term S2HdL2E

c
2 in

the following discussions.

In the Model II, we want to explain the PAMELA and ATIC experiments. We choose

the U(1)X charges for S, E ′ and E ′ as follows

XS = 1/2, XE′ = −4, XE
′ = 4. (9)

Similar to the Model I, the U(1)X gauge symmetry is broken down to a Z2 symmetry after

A obtains a VEV. Under this Z2 symmetry, only S is odd while all the other SM particles

are even. Then the leading Yukawa coupling terms between S and the SM particles in the

superpotential are

W ⊃
(

A

MPl

)4

HdL1E ′ +

(
S2

MPl

)
Ec

1E
′ +MVE ′E ′ . (10)

Similar to the Model I, integrating out the vector-like particles E ′ and E ′, we obtain

W ⊃ − ǫ4
(

S2

MPlMV

)
HdL1E

c
1 . (11)

In this paper, we will define M2
∗ = MPlMV /ǫ

n where n is equal to 5 in Model I and 4 in

Model II. With MV around 1013 GeV, we obtain that M∗ is around 1017 GeV. To get MV

around 1013 GeV, we can introduce additional global U(1)′′ symmetry and a SM singlet field

S ′ which breaks the U(1)′′ symmetry. The U(1)′′ charges for Li, E
c
i , E

′, S, and S ′ are 1, −1,

−1, 1/2 and 1, while the U(1)′′ charges for all the other particles are zero. Therefore, all

the previous terms in the superpotential including the SM fermion Yukawa coupling terms

are invariant except the term MVE ′E ′. The vector-like mass term for E ′ and E ′ can be

generated by the following superpotential term after the U(1)′′ symmetry breaking

W ⊃ S ′E ′E ′ . (12)
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Assuming that S ′ acquires a VEV around 1013 GeV, we obtain thatMV is around 1013 GeV.

By the way, the other Yukawa coupling terms among S, the SM fermions and Higgs fields

might have the prefactor
(

S2

M2
Pl

)n (
A

MPl

)m
(...) (n ≥ 1 or m ≥ 1). Thus, these Yukawa cou-

pling terms are supressed by at least the Planck scale square and then are negligible since S’s

VEV is around the TeV scale. In this paper, we only consider the minimal Kähler potential.

In general, the dimension-six operators of the form SS†φφ†/M2
Pl cannot be forbidden by any

symmetry where φ denotes the SM fermions and Higgs fields. These dimension-six operators

can induce DM two-body decay through derivative couplings [16]. However, their contribu-

tions to the CR are also ignorable since these operators are suppressed by the Planck scale

square as well.

III. DECAY AND STABLE DARK MATTERS

A. The CMSSM Benchmark Point for CDMS II Experiment

The CMSSM with the LSP neutralino as DM has been studied extensively before. Typi-

cally, the LSP neutralino with mass about tens of GeV is in tension with the lightest CP-even

Higgs boson mass whose low bound from the LEP is 114 GeV. Especially, we require that

the LSP neutralino relic density be small about half of the total DM relic density, i.e.

ΩÑ0
1

h2 ∼ 0.06. In this paper, we do not scan all the viable parameter space. We only con-

sider a CMSSM benchmark point that satisfies all the constraints. We choose the following

five free parameters at the GUT scale

m0 = 310GeV, m1/2 = 250GeV, A0 = −1040, tanβ = 30, sign(µ) = +1. (13)

As expected, this benchmark point is in the coannihilation region [34] with small mass

difference between the light stau τ̃1 and LSP neutralino, i.e., mτ̃1 − mÑ0
1
≤ 8 GeV. Such

benchmark point is not interesting previously since the LSP neutralino relic density is smaller

than the observed whole DM relic density. However, it is fine in our models since we have

two DM particles. With MicrOMEGAs 2.0 [35], we obtain the LSP neutralino relic density

ΩÑ0
1

h2 ≈ 0.08 . (14)

Moreover, the mass of the LSP neutralino is about 101.6 GeV. And the spin-independent

cross section between the LSP neutralino and nucleon is about σSI ≈ 5×10−9 pb. Although

this cross section is a little bit small, we can still explain the CDMS II experiment due to

the uncertainties of the QCD effects in the calculations.

It is necessary to address the mass spectrum of this benchmark point in details for the

following calculations. The lightest neutralino Ñ1 is bino-like, while the heavy neutralinos
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Ñ3,4 are Higgsino-like. Since tanβ is large, in the charged Higgs boson system, H+
u is the

major component of the Goldstone boson, with the ratio to (H−
d )

∗ to be tan2 β : 1. So we

can treat H−
d as the charged Higgs boson C− approximately, i.e., H−

d ≈ C−. The CP-odd

neutral Higgs and charged Higgs mass matries are diagonlized by the same matrix. Thus, the

imaginary part of H0
u gives the main component of the Goldstone boson, while A0 is mainly

the imaginary part of H0
d , i.e., A

0 ≈ Im(H0
d). Same conclusion applies to the heavy CP-even

Higgs boson H0, i.e., H0 ≈ Re(H0
d) because H

0 is equal to cosαRe(H0
d)+ sinαRe(H0

u) with

α ≈ −0.04. As for the chargino system, the large µ term implies that the charged Higgsino

is the major component of heavy chargino C̃−
2 . Because we need to use the neutralino,

chargino and Higgs mixing matrices in the following discussions, we calculate the relevant

masses and mixings at low energy by SuSpect [36]. For the neutralino system, the four

particles (−iB̃,−iW̃3, H̃
0
d , H̃

0
u) are transformed into the mass eigenstates (Ñ0

1 , Ñ
0
2 , Ñ

0
3 , Ñ

0
4 )

by the unitary matrix Z



−iB̃
−iW̃3

H̃0
d

H̃0
u




=




1.00 −0.02 0.08 −0.02

0.03 0.99 −0.16 0.06

0.04 −0.07 −0.70 −0.71

0.07 −0.15 −0.69 0.70







Ñ0
1

Ñ0
2

Ñ0
3

Ñ0
4



. (15)

And the neutralino mass eigenvalues are mÑ1,2,3,4
= 101.6, 196.2, 571.0, 577.0 GeV, respec-

tively. The particles (W−
3 , H−

d ) and (Re(H0
d), Re(H

0
u)) can be written respectively in terms

of their mass eigenstates as follows
(
W̃−

3

H̃−
d

)
=

(
−0.98 0.22

0.22 0.98

)(
C̃−

1

C̃−
2

)
,

(
Re(H0

d)

Re(H0
u)

)
=

(
1.00 0.04

−0.04 1.00

)(
H0

h0

)
, (16)

with mC̃−

1,2
= 196.1, 578.5 GeV, and mh0,H0 = 117.90, 510.81 GeV. The Im(H0

d ) and Im(H0
u)

are not given explicitly here, and the mass of the CP-odd Higgs field A0 is 512.49 GeV.

B. DM S Three-Body Decays

In this paper, we will concentrate on the calculations in Model I. For simplicity, we will

not explain the calculations in Model II since the calculations are not only similar but also

simpler. To analyze the DM S primary decays, we write the operator in the components

explicitly

CµSHdLE
c+c.c. = CµSH0

dEE
c − CµSH−

d νE
c + c.c.

⊃CµS(H0
dµLµ

†
R + H̃0

dµLµ̃
∗
R + H̃0

d µ̃Lµ
†
R)− CµS(H−

d νµµ
†
R + H̃−

d νµµ̃
∗
R + H̃−

d ν̃µµ
†
R)

+ CµS̃(H0
dµLµ̃

∗
R +H0

d µ̃Lµ
∗
R + H̃0

d µ̃Lµ̃
∗
R + H̃0

d µ̃Lµ̃
†
R)

− CµS̃(H−
d νµµ̃

∗
R +H−

d ν̃µµ
∗
R + H̃−

d ν̃µµ̃
∗
R + H̃−

d ν̃µµ̃
†
R), (17)
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where Cµ is equal to 〈S〉/M2
∗ times the order one coefficient. If these states are transferred

to the mass eigenstates, further mixing factor must be included. After H0
d obtains a VEV,

we shall have two-body and three-body S decays. Comparing to the two-body S decays,

the three-body S decays have an extra factor (MD/〈H0
d〉)2/(96π2) where mD is the mass of

the heavy DM particle S. In our models, we choose MD = 3 TeV and tanβ = 30, and then

we get (MD/〈H0
d〉)2/(96π2) ∼ 282, Therefore, we only consider three-body S decays in this

paper.

The heavy decay DM particle is the scalar component of S, whose three-body on-shell

decays are given by the second line of Eq. (17)

S → Ñ3,4µµ̃R, C̃1,2νµµ̃L, C̃1,2µν̃µL, A0(H0)µµ, C−νµµR . (18)

With the Eq. (B9) in the Appendix B, we obtain that all these nine primary decay channels

almost have the democratic rates except the mixing factor for each channel. Anyway, the

total decay rate is given by

Γtotal =
1

128π3

〈S〉2m2
D

M4
∗

(
∑

I

C2
IRI

)
×mD, (19)

where I denotes the I-th decay channel in Eq. (18). In our paper, the DM particle S is so

heavy that the phase space suppressing factor RI is almost process independent and is a

constant around 1/6 (see Eq. (B9)). Then, the scale of the DM S lifetime is estimated to be

τS ∼ 2.7× 1026 ×
(
3TeV

mD

)3(
M∗

1017GeV

)4(
3TeV

〈S〉

)2(
1∑

I C2
IRI

)
s. (20)

The random coefficient of the operator has been set to be 1. Notice that except the last

factor, Eq. (20) is the so-called τeff which is the inverse of Γeff defined in Eq. (B9).

IV. COSMIC RAY ANOMALIES

Although the very large astrophysical uncertainties do exist in the calculations of cosmic

ray, we do not want to scan all the viable parameter space. We only want to demonstrate

that with appropriate parameters, we can explain the PAMELA and FERMI experiments

in Model I and explain the PAMELA and ATIC experiments in Model II.

A. Cosmic e± Excess

In the Micky Way dark halo, the DM S decays into the SM particles, which propagate to

the solar system. The propogation of charged particles is described by diffusion equation.

10



For instance, the diffusion equation for positron is

∂ψ

∂t
−∇ · (K(~x, E)∇ψ)− ∂

∂E
(b(E)ψ) = q(~x, E), (21)

where ψ(~x, E) denotes the positron number density per unit energy. Diffusion coefficient

K = K0E
δ is space independent. The third term describes the energy loss of positron

through the synchrotron radiation and inverse Compton scattering, with loss ratio b(E) =

E2/τE where τE = 1016s. q(~x, E) is the positron source term, describing the positron number

density injected at ~x, per unit time and energy. For simplicity, it can be expressed as the

product of an astrophysics factor and a particle physics factor

q(~x, E) =

(
1

τS

∑

I,F

dN e
I,F

dE
BI,F

)
× ρ(~x)

mD

, (22)

where we introduce another index F to distinguish the different states from the I-th decay

channel. Moreover, the Milky Way DM density profile ρ(~x) in the spherical coordinates is

generically written as

ρ(r) = ρ⊙

(r⊙
r

)γ (1 + (r⊙/rs)
α

1 + (r/rs)α

)(β−γ)/α

, (23)

where r⊙ = 8.5 kpc is the distance from the solar system to the Milky Way center, and the

DM profile density in the solar system is set to be ρ⊙ = 0.3GeV cm−3. According to the

N−body simulation, it has three popular choices parameterized by (α, β, γ). We use the

NFW profile with (1, 3, 1) [37], and choose the DM central core rs = 20 kpc. By the way,

the injected source term is linearly proportional to the decay DM relic density. Therefore,

the fraction of the DM S relic density rDM to the whole DM relic density should be taken

into account. For simplicity, we absorb it into the redefinition of S lifetime by τS → rDMτS

without disturbing any other terms.

The normalized energy spectrum distribution function dN e
I,F/dE = (2/mD)dN

e
I,F/dx

describes the positrons from the specific DM decay intermediate state (I, F ), with (I, F ) =

µ̃L, A
0..., and so on. And BI,F = BI is the corresponding branch ratio. In this paper,

summing over all the channels (see Appendix, with a little bit changed notation), we obtain

the total fragmentation function

dNS
e

dx
=

Γeff

Γtotal

∑

I,F

(
C2
I,FRI,F

)
× 1

RI,F

dÑ

dxI,F
⊗ dN

dxI,Fe

, (24)

where dN/dxI,F and 1/RI,FdN/dx
I,F
e respectively give the fragmentation functions in the

rest frame of the DM S and particle (I, F ). The former is analytically calculable, while the

later is obtained through PYTHIA [38] simulation (except for muon decay, we shall use the

11



analytical formula). The total spectrum is their convolution, whose explicit form can be

found in Eq. (B12). By the way, when we put Eq. (24) into Eq. (22), the τS factor in the

front of source term in Eq. (22) is cancelled by factor Γtotal in Eq. (24). So, τeff or Γeff is

still the free parameter in the calculations of positron propagation.

Eq. (21) can be approximately solved analytically. The final positron flux observed at the

Earth Φe+(r⊙, E) is factorized into the convolution of He(Es, E) which encodes the whole

astrophysical information and the inject spectrum dN e
S/dEs

Φe+(r⊙, E) =
βe+

4π
κ
τE
E2

∫ Emax

E

He(Es, E)dEs
dN e

S

dEs
, (25)

where βe+ is the velocity of the observed positron and κ = ρ⊙/(τeff mD). The concrete

method to calculate the halo functions for electron He(Es, E) and for anti-proton Hp̄(E)

can be found in Ref. [8, 39].

To compare the data, we should consider the cosmic background. It is believed that

the astrophysical e± source is mainly due to supernova explosions (primary e−) and the

interactions between the CR nuclei and light atoms in interstellar medium (secondary e±).

They are usually parameterized in the following form [40]

Φbk,pri
e− =

0.16E−1.1

1 + 11E0.9 + 3.2E2.15
, Φbk,sec

e− =
0.7E0.7

1 + 110E1.5 + 600E2.9 + 580E4.2
,

Φbk,sec
e+ =

4.5E0.7

1 + 650E2.3 + 1500E4.2
, (26)

where the unit is GeV−1cm−2s−1sr−1. Φbk,pri
e− , Φbk,sec

e− , and Φbk,sec
e+ are the background fluxes

for the primary electron, secondary electron, and secondary positron, respectively. Then

the positron fraction observed by the PAMELA experiment and the normalized total elec-

tron/positron fluxes observed by the FERMI and ATIC experiments are respectively given

by

Φe+

Φe+ + Φe−
=

Φbk,sec
e+ + ΦDM

e+

κΦbk,pri
e− + Φbk,sec

e+ + Φbk,sec
e− + ΦDM

e+ + ΦDM
e−

,

E3
e (Φe+ + Φe−) = E3

e (κΦ
bk,pri
e− + Φbk,sec

e+ + Φbk,sec
e− + ΦDM

e+ + ΦDM
e− ) , (27)

where κ ≤ 1 is a parameter which includes the uncertainties of the primary background

electron production.

The PAMELA positron fraction data and FERMI electron/positron data can be fitted

very well by choosing proper τeff and κ. The primary DM S three-body decays into muons,

which subsequently decay to electron/positron, give the hard positron energy spectrum

that is necessary to explain the steep rise in positron fraction observed by the PAMELA

experiment [17]. As for the FERMI experiment, its data show a rather flat spectrum up to

12
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FIG. 1: The comparison between the contributions to total e± fluxes from µ in Model I (or e in

Model II) and all the other particle cascade decays. The red line denotes the contribution from µ

(or e), while the dashed line denotes the contributions from the other particles. The left figure is

for Model II with mD = 1.8 TeV, and the right figure for Model I with mD = 3.0 TeV.

about 1 TeV. Moreover, there are a faint minimum and a faint peak at about 100 GeV and

400 GeV, respectively, which can be considered as the subtle fine structure. Interestingly,

we can fit such structure as well. The possible reason is that: at low energy (. 50 GeV),

the DM S decay contributions to the observed electron/positron spectrum are dominated

by these from A0, H0... channels; while at high energy, they are dominated by these from

cascade muon decays. The muon decays produce a relative harder spectrum, which is peaked

around 400 GeV. Because the peak varies with the DM particle mass, this explains why we

choose mD = 3 TeV as a typical fitting value in Model I. In Fig. 1, we compare these two

contributions in Model I with mD = 3.0 TeV and in Model II with mD = 1.8 TeV. In Fig. 2,

we present the fitting for the FERMI data in Model I with τeff = 0.72 × 1026s, mD = 3.0

TeV, and κ = 0.65, and the fitting for the ATIC data in Model II with τeff = 0.52× 1026s,

mD = 1.8 TeV and κ = 0.67. In short, these fittings are pretty good especially at relative

low energy.

In addition, from Fig. 3, we obtain that our fitting for the PAMELA positron fraction

data in Model II looks fine since the positron spectrum from the DM direct three-body

decay is relatively harder. However, we can not fit the PAMELA positron fraction data in

Model I very well in the low energy region (< 20 GeV). The reason is that the low energy

positron data are dominated by the sparticle and Higgs boson cascade decays, which produce

large number of soft electron/positron. Therefore, the positron fraction can exceed the

background value. Interestingly, the main character at the high energy region is reproduced

pretty well. Especially, the steep rising is obvious due to the harder positrons from muon
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FIG. 2: The FERMI data fitting in Model I and the ATIC data fitting in Model II.

decay. Moreover, it predicts a continuously going up trend until arriving at the peak around

0.5 TeV, which can be tested by the upcoming PAMELA experiment.

B. Anti-Proton Fluxes

Bcause Higgs bosons and charginos can couple to the SM quarks, their decays may

produce anti-proton excess as well. However, the anti-proton excess is not observed by the

PAMELA experiment. The propagation of anti-proton is similar to that of positron, but it

is simpler by the virtue of no energy loss process from the inverse Compton scattering

∂ψ

∂t
−∇ · (K(~x, E)∇ψ) +∇ · (~Vc(~x)ψ) = q(~x, E)− 2hδ(z)Γannψ . (28)

However, the Milky Way’s galactic wind ~Vc(~x), which is usually assumed along the z axial

direction and then is reduced to Vc sign(z)~k, induces the drift of anti-protons during prop-

agation, as reflected in the third term. The last term represents the annihilations between

the anti-protons and interstellar protons in the galactic plane, whose thickness is about

h ≈ 0.1 kpc ≪ L, the half-thickness of cylinder diffusion region of charged particles. The
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FIG. 3: PAMELA data fitting for positron fraction in Model I and Model II.

annihilation rate is given by Γann = (nH + 42/3nHe)σ
ann
pp̄ vp̄ with [41]

σann
pp̄ = { 661(1 + 0.0115T−0.774 − 0.984T 0.0151)mbarn, for T < 15.5GeV

36T−0.5mbarn, for T ≥ 15.5GeV
, (29)

where T = E −mp is the proton kinetic energy. We can use K0, δ, Vc and L to classify the

astrophysical models that are compatible with the B/C ratio into three types [8], where K0

and δ appear in the diffusion coefficient K. And each type is characterized by the flux of

anti-protons. To suppress the anti-proton flux, we choose the parameters which can produce

the minimal anti-protons: δ = 0.85, K0 = 0.0016 kpc2Myr−1, L=1 kpc, and Vc = 13.5 km

s−1.

Similarly, the anti-proton flux at the heliosphere boundary is formally solved to be

Φp̄
⊙(E) =

1

Γtotal

× βp̄
4π

× dNS
p̄

dE
×Hp̄(E) , (30)

where

dNS
p̄

dx
=

Γeff

Γtotal

∑

I,F

(
C2
I,FRI,F

)
× 1

RI,F

dÑ

dxI,F
⊗ dN

dxI,Fp

. (31)

For details, please see Appendix B.
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It is much simpler to obtain the flux for anti-proton than that of positron. The point is

that the astrophysical information is totally factorized out in Hp̄(E), and no further convolu-

tion operation is needed. The predicted anti-proton fluxes comparing to the background flux

in Model I and Model II are plotted in Fig. 4, where the suitable astrophysical parameters

have been chosen. The background anti-protons mainly arise from the collisions between

the primary CR protons (produced also by supernova) and the interstellar hydrogen gas (for

details, please see Ref. [41]). Taking proper astrophysics parameters in the practical calcu-

lations, we find that the anti-proton excess is definitely excluded below 50 GeV (Sixteen of

the PAMELA seventeen points on p̄/p are in this energy region [3].). In Model I for the

PAMELA and FERMI data fitting, the DM particle S is very heavy about 3 TeV, and then

the anti-proton flux is suppressed in all energy region below about 130 GeV. However, in

Model II for the PAMELA and ATIC data fitting, the DM particle S is about 1.8 TeV, and

then the anti-proton flux begins to exceed background above about 60 GeV. Especially, the

excess is more significant as the energy increasing, which is interesting since it can be tested

in the future.
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FIG. 4: PAMELA data fitting for p̄/p ratio in Model I and Model II. The anti-proton fluxes Φp̄
⊙(E)

is in the unit GeV−1m−2s−1sr−1.

16



V. DISCUSSION AND CONCLUSIONS

We proposed two supersymmetric Standard Models with decaying and stable DM parti-

cles. To explain the SM fermion masses and mixings, we considered an anomalous U(1)X

gauge symmetry whose anomaly is cancelled by the Green-Schwarz mechanism. Around the

string scale, the U(1)X gauge symmetry is broken down to the Z2 symmetry under which

only S is odd. Thus, S is stable and can be a DM candidate. After S obtains a VEV around

the TeV scale, the Z2 symmetry is broken and then S can decay. In our models, on the one

hand, the LSP neutralino has mass 101.6 GeV, and its relic density is about ΩÑ0
1
h2 ≈ 0.08.

Because the lightest neutralino-nucleon cross section is 5 × 10−9 pb, the CDMS II results

can be explained. On the other hand, S is a decay DM particle that can three-body cascade

decay into the MSSM particles. With suitable U(1)X charges, S decays dominated into the

second family of the SM leptons in Model I and into the first family of the SM leptons in

Model II. In Model I, if the mass of the DM particle S is 3 TeV and S has effective lifetime

about τeff ≈ 0.72× 1026s (the real lifetime is about 2.2× 1026s), we are able to explain the

PAMELA/FERMI experiments simultaneously. In Model II, if the mass of the DM particle

S is 1.8 TeV and S has effective lifetime about τeff ≈ 0.52 × 1026s, we can explain the

PAMELA/ATIC experiments as well. In addition, taking the proper astrophysics parame-

ters that produce the minimal anti-protons, we have shown that our models are consistent

with p̄/p measurement in the PAMELA experiment.

Finally, although the accompanied gamma-ray and neutrino fluxes are not discussed here,

they deserve further study. The primary hard neutrinos, as well as the soft gammas and

neutrinos during the sparticle and Higgs fragmentations are produced. They may provide

the spectrum properties through the inverse Compton scattering [42] that can be tested by

the ongoing FERMI experiment. In addition, the complete and systematic studies of the

multi-body decays and multi-contributions are interesting since we do need them in the DM

model building. Furthermore, it is interesting to study the CMSSM parameter space where

the LSP neutralino relic density is smaller than the observed total DM relic desity since we

may have multicomponent DM.
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Appendix A: The DM S Three-body Decay

In this Appendix, we develop some useful approximation formulae for the three-body DM

S decay. First, let us explain the convention. The decay width is calculated in the rest frame

of the heavy parent particle S (Fermionic or scalar component depends on the choice.). In

a decay channel, we always have the order of the final state masses as m3 > m2 > m1.

In this case, in general m3 is the mass of a slepton or Higgs bonson, with m3/mD . 0.1.

And m2 denotes the mass of Higgsino, m2/mD . 0.05. Finally, the lightest particle is

either muon or neutrino, whose mass m1 = mµ,ν < 10−4mD is ignorable. To simplify the

calculations we set m1 = 0.

First, we consider a general three-body decay process described by a heavy complex scalar

S with mass M that decays into two fermions ψ1,2 plus a scalar φ3. The Feynman diagram

is given in Fig. 5. It is not difficult to get the corresponding amplitude square with the final

S

ψ1

ψ2

φ3

SS S∗

ψ1

ψ
†
1

ψ2 ψ
†
2

φ3

φ∗
3

FIG. 5: The DM S three-body decays into the Higgs bosons and leptons, or the sleptons, Higgsinos

as well as leptons.

state spin summed over

|iM|2 =4C2C2
I (p1 · p2 +m1m2) , (A1)

where C is the coupling constant with mass dimension −1, and CI is the possible mixing

factor arising from converting the interaction state into the mass eigenstate. The mass m1

is still kept in the momentum, and then will be set to zero finally.

Appendix B: Fragmentation Function

Fragmentation function dN/dxI is analytically calculable for three-body decay Y →
a+ b+ c. For the isotropic decay it is very convenient [43] to write the phase space integral

according to the scaled variables xI = 2PI · Y/
√
Y 2, where the invariant mass is defined as

Y 2 = (a + b + c)2. Here, the particles and their four-momenta are labeled with the same

symbols. In the rest frame of Y , we have Y = mY and xI = 2EI/mY . The three-body phase
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space is reduced to the two-body phase space by pairing a with b and further integrating

over c

d3(PS, Y → abc) =
Y 2

128π3
dxadxb . (B1)

Then we find that the spectrum of the observed final state, for instance a, is obtained by

integrating over xb. Kinematics constrains xa to be in the region

2ǫa 6 xa 6 1 +
(
ǫ2a − ǫ2b − ǫ2c − 2ǫbǫc

)
= Rmax

a , (B2)

where ǫ2a ≡ m2
a/Y

2. If all the final state masses are ignorable, the region is between 0 and

1. For fixed xa, xb is constrained within the region [R−
b , R

+
b ]

R±
b =

1

2
(1− xa + ǫ2a)

−1[(2− xa)(1 + ǫ2a + ǫ2b − ǫ2c − xa)±
√
x2a − 4ǫ2aλ

1

2

(
1 + ǫ2a − xa, ǫ

2
b , ǫ

2
c

)
]

≈1

2
((2− xa)± xa) ,

(B3)

where the approximation is valid for small mass limit ǫa,b,c ≪ 1, and the triangle function is

defined as λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The general process is S → ψ1ψ2φ3 with amplitude given in Eq. (A1). In terms of x and

ǫ, we can write the amplitude as follows

|M|2 =2(CCI)2Y 2
(
1 + ǫ23 − (ǫ2 + ǫ1)

2 − x3
)
, (B4)

which is symmetric for the subscripts 1 and 2. The distribution function of the fermion ψ1

is obtained by paring ψ1 and φ3, i.e., setting a = ψ1, b = φ3, c = ψ2,

dN

dx1
=
2(CCI)2Y 4

256π3mD

×N
∫ R+

3
(x1)

R−

3
(x1)

dx3
(
1 + ǫ23 − (ǫ2 + ǫ1)

2 − x3
)

=
2(CCI)2Y 4

256π3mD
N
[
1 + ǫ23 − (ǫ2 + ǫ1)

2 − 1

2

(
R+

3 (x1) +R−
3 (x1)

)]

×
(
R+

3 (x1)− R−
3 (x1)

)
, (B5)

where N = 1/Γ is the normalization factor. In the massless limit, it is approximated to

be a simple function x21. So the fermion spectrum is very hard. The distribution of ψ2 is

got simply by replacing the subscript 1 by 2 in the above formula. Similarly, we get the

distribution function of scalar φ3 by choosing a = φ3, b = ψ1, and c = ψ2

dN

dx3
=
2(CCI)2Y 4

256π3mD
N
∫ R+

1
(x3)

R−

1
(x3)

dx1
(
1 + ǫ23 − (ǫ2 + ǫ1)

2 − x3
)

=
2(CCI)2Y 4

256π3mD
N
(
1 + ǫ23 − (ǫ2 + ǫ1)

2 − x3
) (
R+

1 (x3)−R−
1 (x3)

)
. (B6)
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Its massless limit is simplified to be dN/dx3 → (1 − x3)x3, so the scalar spectrum is softer

than the fermion spectrum. Integrating over x3, we get the decay rate

ΓI ≈
1

128π3

1

mD

× (CCI)2Y 4 × RI,F , (B7)

where

RI,F =
1

6

(
1 + 9ǫ23 + 12ǫ23 log ǫ3 + 12ǫ2ǫ3 − 3ǫ22

)
. (B8)

In this approximation, the terms involving ǫ1 is negligible here. Furthermore, if ǫ2 is also

small enough, the last two terms can be discarded.

For convenience, we define the DM effective decay rate for all channels as the typical

scale of its decay

Γeff ≡ 1

128π3

1

mD
× C2Y 4 . (B9)

Then we have ΓI = ΓeffC2
IRI,F . And the normalized distribution function is rewritten as a

clear form dN/dx = 1/RI,F × (dÑ/dx).

1. General Cascade Decay Spectra

In our models, e± signals come from both the DM cascade decay and direct decay, for

example,

S → Ñ1,2µµ̃, µ→ eνν, µ̃→ Ñ1e. (B10)

The positron energy spectrum in rest frame of S is determined to be the convolution of two

distribution functions. Physically speaking, the fragmentation functions of the (N)MSSM

particles (I, F ) can be extracted out from PYTHIA [38]

dN

dxI,Fe

, xI,Fe ≡ 2EI,F
e

mI,F
, (B11)

which is calculated in the rest frame of (I, F ) particle. Converting to the rest frame of S,

we obtain the total positron energy spectrum

dN

dxSe
=
∑

I,F

BI,F

∫ Rmax
I,F

2ǫI,F

dxI,F
1

RI,F

dÑ

dxI,F

∫ 1

−1

d cos θI,F

∫ Ie

2ǫe

dxIe
dN

dxI,Fe

× δ

(
2xSe x

−1
I,F − xI,Fe − cos θI,F

√
(xI,Fe )2 − 4ǫ2e

√
1− 4ǫ2I,F

)
, (B12)

with the scaled energies xSe ≡ 2ES
e /mD and xI,F ≡ 2EI,F/mD, and the mass ratios

ǫe ≡ me/mI and ǫI,F ≡ mI,F/mD. The branch ratio BI,F is given by BI,F = ΓI,F/Γtotal. No-

tice that Ie denotes the largest positron energy fraction in the fragmentation of the (I, F )
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particle. But the positron production is not clear in the course of fragmentation, so we

cannot make sure the value of Ie. However, for me ≪ mI,F , we have Ie = 1 [44].

For three-body decays, the upper limit Rmax
I,F can be found in Eq. (B2). In the rest frame of

the (I, F ) particle, θI,F is the angle between the electron spatial momentum direction and the

boost axis of the (I, F ) particle. The δ−function simply indicates that for some fixed boosted

energy xSe , one should integrate over all possible configurations for (xI,Fe , cos θI,F ). In other

words, Eq. (B12) makes the Lorentze boost of the energy spectrum: dN/dxI,Fe → dÑ/dxSe ,

and then convoluted by the distribution dN/dxI,F that denotes the differential probability

of S decay to (I, F ) particle in the rest frame of S. Finally, we get the total positron energy

spectrum.

For isotropic decay of the (I, F ) particle, the distribution function is independent on

angle, which can be integrated out

dN

dxSe
=

Γeff

Γtotal

∑

I,F

C2
I,FRI,F√
1− 4ǫ2I,F

∫ Rmax
I,F

2ǫI,F

dxI,F
1

RI,F

dÑ

dxI,F

∫ max(xI,F )

min(xI,F )

dxI,Fe

1√
(xI,Fe )2 − 4ǫ2e

dN

dxI,Fe

. (B13)

The normalization condition of dN/dxSe in each decay channel is

∫
dN

dxSe
dxSe = multiI,F , (B14)

where multiI,F denotes how many electrons are produced by the fragmentation of each

(I, F ) particle. The integrand region in Eq. (B13) is given by min(xI,F ) = R−(xI,F ) and

max(xI,F ) = min(Ie,R+) with

R±(xI,F ) =
1

2

(
xSe ±

√
1− 4ǫ2I,F

√
(xSe )

2 − 4(ǫeǫI,FxI,F )2
)
ǫ−2
I,Fx

−1
I,F . (B15)

If R− > Ie, the integral is zero. Then the constrained R±, which depends only on the

ratio r = xSe /xI,F , in turn constrains the integral region for xI,F . If ǫI,F ≪ 1 is satisfied,

then R+ ≈ xSe /(xIǫ
2
I) ≫ 1. So the upper limit always takes Ie. For example, let us choose

(I, F ) = µ. But in this paper, this is not always true since the sparticles and Higgs bosons

are heavy. Consequently there are some values of r which gives R+ > Ie. For the later case,

one can show that R± is monotonically increase with r, and the lower limit smaller than

Ie gives the upper bound for r ≤ η2, which is the larger root of R− = 0. However, in the

former case, R− > Ie gives bound η1 ≤ r ≤ η2. In both cases, for fixed xSe , we must have

xI ≥ xSe /η2.
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2. Analytical e± Spectra from Three-Body Cascade Decays

As an application, we use the above formulae to calculate the e± spectrum functions from

S → µ + fermion + scalar followed by µ three-body decay. Notice that ǫµ ≪ ǫe ≪ 1 and

η1 ≤ r ≤ η2, we obtain 2η1ǫµ ≤ xSe ≤ Rmax
µ η2. The spectrum functions dN/dxµe and dÑ/dxµ

are respectively given by

dN

dxµe
= 2(xµe )

2(3− 2xµe ),
dÑ

dxµ
≈
(
1

2
− ǫ2I

1− xµ

)
x2µ , (B16)

where the approximated spectrum is calculated according to Eq. (B5).

If we are only interested in the positrons with energy higher than 1 GeV, we obtain

R−≈ xSe /xµ. Integrating over xµe and xµ, we have

dN

dxSe
=

∫ Rmax
µ

xS
e /η2

dxµ

[
5

3
− 3

(
xSe
xµ

)2

+
4

3

(
xSe
xµ

)3
]
×
(
1

2
− ǫ2I

1− xµ

)
x2µ

≈ 5

18
− 3

2

(
xSe
)2

+
11

9

(
xSe
)3 − 2

3

(
xSe
)3

log xSe

+
ǫ2I
3

[
5− 5xSe + 2

(
xSe
)2 − 2

(
xSe
)3

+ 4
(
xSe
)3

log xSe

+2
(
5− 9

(
xSe
)2

+ 4
(
xSe
)3)]

.

(B17)

The correction term is complicated but important since without it we cannot have the right

order. This expression is valid for the energy fraction 2ǫµη2 ≤ xSe ≤ η2R
max
µ . The DM

three-body cascade decay produces a harder spectrum than the two-body decay since its

intermediate particle produces a hard spectrum. This is clearly shown in the muon case.

Appendix C: Fitting Positron Spectra

In this Appendix, we present the positron spectra got through the above procedure.

Similarly, we can calculate the anti-proton spectra, although we will not present the details

here. The basic method is to simulate the positron and anti-proton spectra in the rest

frame of the sparticles and Higgs bosons via PYTHIA (each state (I, F ) must be simulated

separately and then summed over). We will not pay much attention to the detail fitting but

present the results directly. Notation is consistent with the one given above, but we change

the variable to energy, as in the original form from simulation.

The spectra are divided into three types: the type of sleptons, the type of Higgs bosons

and the type of Higgsinos. For sleptons, the spectra from the left- and right-handed sparticles
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have quite different behaviours, since their weak boson decays are different. The total e±

from fragmentations are described by the following functions

µ̃L :
dN

dE
= exp16.926−15.601E0.183

E1.438
[
1 + 14.90 log(1 + 0.05E)6.1

]
− 8.5× 10−5E0.55,

ν̃µL :
dN

dE
= exp16.913−15.601E0.183

E1.437
[
1 + 14.9 log(1 + 0.055E)6.5

]
− 9.0× 10−7E0.60,

µ̃R :
dN

dE
=

E1.302

0.245 + 262.353E1.971
+

E0.031

104.334 + 5.757× 10−5E3.242
.

(C1)

The type for all the Higgs bosons have the similar form, probably because they all are

dominated by the Hd components. For simplicity, we only present A0 as follows

A0 :
dN

dE
= exp17.716−15.601E0.160

E1.327
[
1 + 4.0 log(1 + 0.021E)3.0

]
− 1.0× 10−6E0.8. (C2)

At last, the fitting functions for the neutralinos C̃0
3,4 and charginos C̃±

1,2 are given by

C̃0
3 :

dN

dE
= exp15.461−15.601E0.163

E1.311
[
1 + 40.0 log(1 + 0.025E)2.4

]
− 2.7× 10−5E0.7,

C̃0
4 :

dN

dE
= exp17.880−15.601E0.174

E1.408
[
1 + 14.0 log(1 + 0.024E)4.2

]
− 1.7× 10−6E0.5,

C̃±
1 :

dN

dE
= exp17.198−15.601E0.195

E1.494
[
1− 1.1 log(1 + 0.045E)3.0

]
− 2.7× 10−6E0.5,

C̃±
2 :

dN

dE
= exp17.814−15.601E0.174

E1.416
[
1 + 13.0 log(1 + 0.026E)3.5

]
+ 1.4× 10−6E1.4 .

(C3)

Basically, these fitting functions consist of three parts. The first part describes the low
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FIG. 6: Typical fitting functions: C̃0
4 (left), H (middle) and µ̃L (right). In the simulations, 3× 105

events have been generated by PYTHIA.

energy region very well, the second logarithmic part is added to slow down the exceptional

decreasing, and the last part is used to modulate the region near the DM mass cutoff region.

This kind of fitting functions is not universal, and only applies to our parameter sets. We
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present the typical fittings for three types in Fig. 6. By the way, the small discrepancies

between the fitting functions and simulations do exist at high energy. So the fitting functions

are simply used as the referred fitting functions.
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