49 research outputs found

    Flavin-dependent epitranscriptomic world

    No full text
    International audienceRNAs molecules fulfill key roles in the expression and regulation of the genetic information stored within the DNA chromosomes. In addition to the four canonical bases, U, C, A and G, RNAs harbor various chemically modified derivatives which are generated post-transcriptionally by specific enzymes acting directly at the polymer level. More than one hundred naturally occurring modified nucleosides have been identified to date, the largest number of which is found in tRNAs and rRNA. This remarkable biochemical process produces widely diversified RNAs further expanding the functional repertoires of these nucleic acids. Interestingly, several RNA-modifying enzymes use a flavin bioorganic molecule as a coenzyme in RNA modification pathways. Some of these reactions are simple while others are extremely complex using challenging chemistry orchestrated by large flavoenzymatic systems. In this review, we summarize recent knowledges on the flavin-dependent RNA-modifying enzymes and discuss the relevance of their activity within a cellular context

    Flavin-Dependent Methylation of RNAs: Complex Chemistry for a Simple Modification

    No full text
    International audienceRNA methylation is the most abundant and evolutionarily conserved chemical modification of bases or ribose in noncoding and coding RNAs. This rather simple modification has nevertheless major consequences on the function of maturated RNA molecules and ultimately on their cellular fates. The methyl group employed in the methylation is almost universally derived from S-adenosyl-L-methionine via a simple SN2 displacement reaction. However, in some rare cases, the carbon originates from N5,N10-methylenetetrahydrofolate (CH2=THF). Here, a methylene group is transferred first and requires a subsequent reduction step (2e-+H+) via the flavin adenine dinucleotide hydroquinone (FADH-) to form the final methylated derivative. This FAD/folate-dependent mode of chemical reaction, called reductive methylation, is thus far more complex than the usual simple S-adenosyl-L-methionine-dependent one. This reaction is catalyzed by flavoenzymes, now named TrmFO and RlmFO, which respectively modify transfer and ribosomal RNAs. In this review, we briefly recount how these new RNA methyltransferases were discovered and describe a novel aspect of the chemistry of flavins, wherein this versatile biological cofactor is not just a simple redox catalyst but is also a new methyl transfer agent acting via a critical CH2=(N5)FAD iminium intermediate. The enigmatic structural reorganization of these enzymes that needs to take place during catalysis in order to build their active center is also discussed. Finally, recent findings demonstrated that this flavin-dependent mechanism is also employed by enzymatic systems involved in DNA synthesis, suggesting that the use of this cofactor as a methylating agent of biomolecules could be far more usual than initially anticipated

    Expression and purification of untagged and histidine-tagged folate-dependent tRNA:m5U54 methyltransferase from Bacillus subtilis

    No full text
    International audienceFolate-dependent tRNA m5U methyltransferase TrmFO is a flavoprotein that catalyzes the C5-methylation of uridine at position 54 in the T-Psi-C loop of tRNA in several bacteria. Here we report the cloning and optimization of expression in Escherichia coli BL21 (DE3) of untagged, N-terminus, C-terminus (His)6-tagged TrmFO from Bacillus subtilis. Tagged and untagged TrmFO were purified to homogeneity by metal affinity or ion exchange and heparin affinity, respectively, followed by size-exclusion chromatography. The tag did not significantly alter the expression level, flavin content, activity and secondary structure of the protein. Cop. 2010 Elsevier Inc. All rights reserved

    A Catalytic Intermediate and Several Flavin Redox States Stabilized by Folate-Dependent tRNA Methyltransferase from Bacillus subtilis

    No full text
    International audienceThe flavoprotein TrmFO catalyzes the C5 methylation of uridine 54 in the TΨC loop of tRNAs using 5,10-methylenetetrahydrofolate (CH2THF) as a methylene donor and FAD as a reducing agent. Here, we report biochemical and spectroscopic studies that unravel the remarkable capability of Bacillus subtilis TrmFO to stabilize, in the presence of oxygen, several flavin-reduced forms, including an FADH• radical, and a catalytic intermediate endowed with methylating activity. The FADH• radical was characterized by high-field electron paramagnetic resonance and electron nuclear double-resonance spectroscopies. Interestingly, the enzyme exhibited tRNA methylation activity in the absence of both an added carbon donor and an external reducing agent, indicating that a reaction intermediate, containing presumably CH2THF and FAD hydroquinone, is present in the freshly purified enzyme. Isolation by acid treatment, under anaerobic conditions, of noncovalently bound molecules, followed by mass spectrometry analysis, confirmed the presence in TrmFO of nonmodified FAD. Addition of formaldehyde to the purified enzyme protects the reduced flavins from decay by probably preventing degradation of CH2THF. The absence of air-stable reduced FAD species during anaerobic titration of oxidized TrmFO, performed in the absence or presence of added CH2THF, argues against their thermodynamic stabilization but rather implicates their kinetic trapping by the enzyme. Altogether, the unexpected isolation of a stable catalytic intermediate suggests that the flavin-binding pocket of TrmFO is a highly insulated environment, diverting the reduced FAD present in this intermediate from uncoupled reactions

    Pseudo-merohedral twinning in monoclinic crystals of wild-type human brain neuroglobin

    No full text
    International audienceThe purification, crystallization and successful structure determination by molecular replacement of wild-type human brain neuroglobin at 1.8 Å resolution is reported. The apparent space group was orthorhombic C2221, but the real space group was monoclinic P21, which resulted from twinning. Indeed, the unit-cell parameters, a = 31.2, b = 139.1, c = 31.2 Å, β = 102°, display a fortuitously close to c and twinning by the operator l, −k, h occurs. Twinning was not evident from the initial analysis of intensity distribution, but pseudo-merohedral twinning was revealed by the Padilla and Yeates test based on local intensity differences. A twinning fraction of 0.5 was determined in SHELXL, indicating a perfect hemihedrally twinned crystal. To date, this type of twinning has been reported in more than ten structures, which makes it quite a common case in proteins

    Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases

    No full text
    International audienceDihydrouridine (D) is an abundant modified base of tRNA found in the majority of living organisms. This base is synthesized via an NADPH-dependent reduction of specific uridines by the dihydrouridine synthases (Dus), a large family of flavoenzymes comprising eight subfamilies. Almost all of these enzymes function with only two conserved domains, an N-terminal catalytic domain (TBD) adopting a TIM barrel fold and a unique C-terminal helical domain (HD) devoted to tRNA recognition, except for the animal U20-specific Dus2 enzyme. Curiously, this enzyme is distinguished from paralogues and its fungi orthologues by the acquisition of an additional domain, a double stranded RNA binding domain (dsRBD), which serves as the main tRNA binding module. On the basis of a homology model of yeast Dus2 and the crystallographic structure of a human Dus2 variant (TBD + HD) lacking dsRBD, we herein show that the HD surface of the human enzyme is less electropositive than that of its yeast orthologue. This is partly due to two positively charged residues, K304 and K315, present in yeast and more broadly in fungi Dus2 that are replaced by E294 and Q305 in human and conserved among animals Dus2. By artificially reintroducing these positive charges in human Dus2 lacking dsRBD, we restored a functional tRNA binding in this enzyme variant. Altogether, these results suggest that the electrostatic potential changes of HD have likely played a key role in the emergence of a new tRNA binding mode among Dus2 enzymes

    FAD/folate-dependent tRNA methyltransferase: flavin as a new methyl-transfer agent.

    No full text
    International audienceRNAs contain structurally and functionally important modified nucleosides. Methylation, the most frequent RNA modification in all living organisms, mostly relies on SAM (S-adenosylmethionine)-dependent methyltransferases. TrmFO was recently discovered as a unique tRNA methyltransferase using instead methylenetetrahydrofolate and reduced flavin adenine dinucleotide (FAD) as essential cofactors, but its mechanism has remained elusive. Here, we report that TrmFO carries an active tRNA-methylating agent and characterize it as an original enzyme-methylene-FAD covalent adduct by mass spectrometry and a combination of spectroscopic and biochemical methods. Our data support a novel tRNA methylating mechanism

    Destabilizing an interacting motif strengthens the association of a designed ankyrin repeat protein with tubulin

    Get PDF
    Affinity maturation by random mutagenesis and selection is an established technique to make binding molecules more suitable for applications in biomedical research, diagnostics and therapy. Here we identified an unexpected novel mechanism of affinity increase upon in vitro evolution of a tubulin-specific designed ankyrin repeat protein (DARPin). Structural analysis indicated that in the progenitor DARPin the C-terminal capping repeat (C-cap) undergoes a 25° rotation to avoid a clash with tubulin upon binding. Additionally, the C-cap appears to be involved in electrostatic repulsion with tubulin. Biochemical and structural characterizations demonstrated that the evolved mutants achieved a gain in affinity through destabilization of the C-cap, which relieves the need of a DARPin conformational change upon tubulin binding and removes unfavorable interactions in the complex. Therefore, this specific case of an order-to-disorder transition led to a 100-fold tighter complex with a subnanomolar equilibrium dissociation constant, remarkably associated with a 30% decrease of the binding surface

    Ultrafast photoinduced flavin dynamics in the unusual active site of the tRNA methyltransferase TrmFO

    No full text
    International audienc

    A chemical chaperone induces inhomogeneous conformational changes in flexible proteins

    No full text
    International audienceOrganic osmolytes also known as chemical chaperones are major cellular compounds that favor, by an unclear mechanism, protein's compaction and stabilization of the native state. Here, we have examined the chaperone effect of the naturally occurring trimethylamine N-oxide (TMAO) osmolyte on a loosely packed protein (LPP), known to be a highly flexible form, using an apoprotein mutant of the flavin-dependent RNA methyltransferase as a model. Thermal and chemical denaturation experiments showed that TMAO stabilizes the structural integrity of the apoprotein dramatically. The denaturation reaction is irreversible indicating that the stability of the apoprotein is under kinetic control. This result implies that the stabilization is due to a TMAO-induced reconfiguration of the flexible LPP state, which leads to conformational limitations of the apoprotein likely driven by favorable entropic contribution. Evidence for the conformational perturbation of the apoprotein had been obtained through several biophysical approaches notably analytical ultracentrifugation, circular dichroism, fluorescence spectroscopy, labelling experiments and proteolysis coupled to mass spectrometry. Unexpectedly, TMAO promotes an overall elongation or asymmetrical changes of the hydrodynamic shape of the apoprotein without alteration of the secondary structure. The modulation of the hydrodynamic properties of the protein is associated with diverse inhomogenous conformational changes: loss of the solvent accessible cavities resulting in a dried protein matrix; some side-chain residues initially buried become solvent exposed while some others become hidden. Consequently, the TMAO-induced protein state exhibits impaired capability in the flavin binding process. Our study suggests that the nature of protein conformational changes induced by the chemical chaperones may be specific to protein packing and plasticity. This could be an efficient mechanism by which the cell controls and finely tunes the conformation of the marginally stable LPPs to avoid their inappropriate protein/protein interactions and aggregation
    corecore