923 research outputs found
Pediatric endocrine society survey of diabetes practices in the United States: What is the current state?
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144633/1/pedi12677.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144633/2/pedi12677_am.pd
Genome of Drosophila suzukii, the spotted wing drosophila.
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access
Remotely acting SMCHD1 gene regulatory elements: in silico prediction and identification of potential regulatory variants in patients with FSHD
Background: Facioscapulohumeral dystrophy (FSHD) is commonly associated with contraction of the D4Z4 macro-satellite repeat on chromosome 4q35 (FSHD1) or mutations in the SMCHD1 gene (FSHD2). Recent studies have shown that the clinical manifestation of FSHD1 can be modified by mutations in the SMCHD1 gene within a given family. The absence of either D4Z4 contraction or SMCHD1 mutations in a small cohort of patients suggests that the disease could also be due to disruption of gene regulation. In this study, we postulated that mutations responsible for exerting a modifier effect on FSHD might reside within remotely acting regulatory elements that have the potential to interact at a distance with their cognate gene promoter via chromatin looping. To explore this postulate, genome-wide Hi-C data were used to identify genomic fragments displaying the strongest interaction with the SMCHD1 gene. These fragments were then narrowed down to shorter regions using ENCODE and FANTOM data on transcription factor binding sites and epigenetic marks characteristic of promoters, enhancers and silencers
Leptogenesis Bound on Spontaneous Symmetry Breaking of Global Lepton Number
We propose a new class of leptogenesis bounds on the spontaneous symmetry
breaking of global lepton number. These models have a generic feature of
inducing new lepton number violating interactions, due to the presence of the
Majorons. We analyzed the singlet Majoron model with right-handed neutrinos and
find that the lepton number should be broken above 10^5 GeV to realize a
successful leptogenesis because the annihilations of the right-handed neutrinos
into the massless Majorons and into the standard model Higgs should go out of
equilibrium before the sphaleron process is over. We then argue that this type
of leptogenesis constraint should exist in the singlet-triplet Majoron models
as well as in a class of R-parity violating supersymmetric Majoron models.Comment: 4 pages, 2 figure
Parameter uncertainty and sensitivity in a liquid-effluent dose model
Radioactive materials which are released into streams on the Savannah River Site (SRS) eventually flow into the Savannah River. Tritium, 90 Sr, 137 Cs, and 239 Pu account for the majority of the radiation dose received by users of the Savannah River. This paper focuses on the dose uncertainties originating from variability in parameters describing the transport and uptake of these nuclides. Parameter sensitivity has also been determined for each liquid pathway exposure model. The models used here to estimate radiation dose to an exposed individual provide a range of possible dose estimates that span approximately one order of magnitude. A pathway analysis reveals that aquatic food and water consumption account for more than 95% of the total dose to an individual.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42692/1/10661_2004_Article_BF00547126.pd
Expression and Differential Responsiveness of Central Nervous System Glial Cell Populations to the Acute Phase Protein Serum Amyloid A
Acute-phase response is a systemic reaction to environmental/inflammatory insults and involves hepatic production of acute-phase proteins, including serum amyloid A (SAA). Extrahepatically, SAA immunoreactivity is found in axonal myelin sheaths of cortex in Alzheimer's disease and multiple sclerosis (MS), although its cellular origin is unclear. We examined the responses of cultured rat cortical astrocytes, microglia and oligodendrocyte precursor cells (OPCs) to master pro-inflammatory cytokine tumour necrosis factor (TNF)-\u3b1 and lipopolysaccaride (LPS). TNF-\u3b1 time-dependently increased Saa1 (but not Saa3) mRNA expression in purified microglia, enriched astrocytes, and OPCs (as did LPS for microglia and astrocytes). Astrocytes depleted of microglia were markedly less responsive to TNF-\u3b1 and LPS, even after re-addition of microglia. Microglia and enriched astrocytes showed complementary Saa1 expression profiles following TNF-\u3b1 or LPS challenge, being higher in microglia with TNF-\u3b1 and higher in astrocytes with LPS. Recombinant human apo-SAA stimulated production of both inflammatory mediators and its own mRNA in microglia and enriched, but not microglia-depleted astrocytes. Co-ultramicronized palmitoylethanolamide/luteolin, an established anti-inflammatory/neuroprotective agent, reduced Saa1 expression in OPCs subjected to TNF-\u3b1 treatment. These last data, together with past findings suggest that co-ultramicronized palmitoylethanolamide/luteolin may be a novel approach in the treatment of inflammatory demyelinating disorders like MS
Closed Aromatic Tubes-Capsularenes
In this study, we describe a synthetic method for incorporating arenes into closed tubes that we name capsularenes. First, we prepared vase-shaped molecular baskets 4â7. The baskets comprise a benzene base fused to three bicycle[2.2.1]heptane rings that extend into phthalimide (4), naphthalimide (6), and anthraceneimide sides (7), each carrying a dimethoxyethane acetal group. In the presence of catalytic trifluoroacetic acid (TFA), the acetals at top of 4, 6 and 7 change into aliphatic aldehydes followed by their intramolecular cyclization into 1,3,5-trioxane (1H NMR spectroscopy). Such ring closure is nearly a quantitative process that furnishes differently sized capsularenes 1 (0.7Ă0.9 nm), 8 (0.7Ă1.1 nm;) and 9 (0.7Ă1.4 nm;) characterized by X-Ray crystallography, microcrystal electron diffraction, UV/Vis, fluorescence, cyclic voltammetry, and thermogravimetry. With exceptional rigidity, unique topology, great thermal stability, and perhaps tuneable optoelectronic characteristics, capsularenes hold promise for the construction of novel organic electronic devices
- âŠ