725 research outputs found

    Indicators of Woman Abuse Based on a Chart Review at a Family Practice Center

    Full text link
    Objective: To identify demographic and health indicators of domestic violence. Design: Anonymous questionnaire survey of patients regarding violence and a chart review regarding symptoms and diagnoses. Setting: Community-based family practice residency training center in a midwestern city. Participants: Women 18 years of age or older visiting the center over a 2-month period in 1990. Of 476 eligible participants, 394 (82.7%) consented to complete the survey. Measures: A detailed, standardized measure of violence was used. Physical and psychological problems were given codes from the International Classification of Diseases, Ninth Revision (ICD-9). Results: Younger women and those separated or divorced from their partners were more likely to have been victims. Never-married women also had substantially high rates of victimization. Depression was the strongest indicator of victimization, even when controlling for demographic factors. Back pain, ulcers, headaches, and anxiety were not strong indicators of abuse. A classification analysis showed that a combination of all variables could predict lifetime injury only about half the time and violence in the past year only about 20% of the time. Conclusions: Since neither demographic nor health factors could accurately predict who had been victimized, all women need to be asked about abuse. Physicians should also keep in mind that divorced and unmarried women are often affected by abuse, either immediately or by its long term aftereffects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/89971/1/Saunders-Hamberger-Hovey-1993-Indicators of woman abuse based on a chart review at a family practice center AFM-AMA.pd

    The Mitragyna speciosa (Kratom) Genome: a resource for data-mining potent pharmaceuticals that impact human health

    Get PDF
    Mitragyna speciosa (kratom) produces numerous compounds with pharmaceutical properties including the production of bioactive monoterpene indole and oxindole alkaloids. Using a linked-read approach, a 1,122,519,462 bp draft assembly of M. speciosa “Rifat” was generated with an N50 scaffold size of 1,020,971 bp and an N50 contig size of 70,448 bp that encodes 55,746 genes. Chromosome counting revealed that “Rifat” is a tetraploid with a base chromosome number of 11, which was further corroborated by orthology and syntenic analysis of the genome. Analysis of genes and clusters involved in specialized metabolism revealed genes putatively involved in alkaloid biosynthesis. Access to the genome of M. speciosa will facilitate an improved understanding of alkaloid biosynthesis and accelerate the production of bioactive alkaloids in heterologous hosts

    Anderson localization of ballooning modes, quantum chaos and the stability of compact quasiaxially symmetric stellarators

    No full text
    The radially local magnetohydrodynamic(MHD) ballooning stability of a compact, quasiaxially symmetric stellarator (QAS), is examined just above the ballooning beta limit with a method that can lead to estimates of global stability. Here MHDstability is analyzed through the calculation and examination of the ballooning modeeigenvalue isosurfaces in the 3-space (s,α,Ξk); s is the edge normalized toroidal flux, α is the field linevariable, and Ξk is the perpendicular wave vector or ballooning parameter. Broken symmetry, i.e., deviations from axisymmetry, in the stellarator magnetic field geometry causes localization of the ballooning mode eigenfunction, and gives rise to new types of nonsymmetric eigenvalue isosurfaces in both the stable and unstable spectrum. For eigenvalues far above the marginal point, isosurfaces are topologically spherical, indicative of strong “quantum chaos.” The complexity of QAS marginal isosurfaces suggests that finite Larmor radius stabilization estimates will be difficult and that fully three-dimensional, high-nMHD computations are required to predict the beta limit.Research supported by U.S. DOE Contract No. DEAC02-76CH0373. John Canik held a U.S. DOE National Undergraduate Fellowship at Princeton Plasma Physics Laboratory, during the summer of 2000

    Strong "quantum" chaos in the global ballooning mode spectrum of three-dimensional plasmas

    Full text link
    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a kk-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to two stellarator cases.Comment: 4 pages typeset, including 2 figures. Paper accepted for publication in Phys. Rev. Letter

    Enlargement of Submicron Gas‐Borne Particles by Heterogeneous Condensation for Energy‐Efficient Aerosol Separation

    Get PDF
    To improve the efficiency of aerosol separation, a process sequence for particle enlargement by condensation of water vapor on their surface is suggested. The presented method makes use of packed columns in non-equilibrium operation to achieve supersaturation, which is required for droplet growth. Although this method is known for several years, it is not widely used in industrial processes and still needs accurate investigations for consolidation and establishment. The simulation tool AerCoDe3.0 for predicting saturation and particle growth in packed columns allows investigating the thermal energy consumption under various operation conditions. Based on the results obtained in this study, optimized arrangements of columns, which are applicable as preconditioning step for existing particle separators, are proposed

    Magnetohydrodynamics and Plasma Cosmology

    Full text link
    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.Comment: 9 pages, RevTeX, To appear in the Proceedings of the Peyresq X Meeting, IJTP Conference Serie

    Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase

    Get PDF
    BACKGROUND: For a long time now, glucose has been thought to be the main, if not the sole substrate for brain energy metabolism. Recent data nevertheless suggest that other molecules, such as monocarboxylates (lactate and pyruvate mainly) could be suitable substrates. Although monocarboxylates poorly cross the blood brain barrier (BBB), such substrates could replace glucose if produced locally.The two key enzymatiques systems required for the production of these monocarboxylates are lactate dehydrogenase (LDH; EC1.1.1.27) that catalyses the interconversion of lactate and pyruvate and the pyruvate dehydrogenase complex that irreversibly funnels pyruvate towards the mitochondrial TCA and oxydative phosphorylation. RESULTS: In this article, we show, with monoclonal antibodies applied to post-mortem human brain tissues, that the typically glycolytic isoenzyme of lactate dehydrogenase (LDH-5; also called LDHA or LDHM) is selectively present in astrocytes, and not in neurons, whereas pyruvate dehydrogenase (PDH) is mainly detected in neurons and barely in astrocytes. At the regional level, the distribution of the LDH-5 immunoreactive astrocytes is laminar and corresponds to regions of maximal 2-deoxyglucose uptake in the occipital cortex and hippocampus. In hippocampus, we observed that the distribution of the oxidative enzyme PDH was enriched in the neurons of the stratum pyramidale and stratum granulosum of CA1 through CA4, whereas the glycolytic enzyme LDH-5 was enriched in astrocytes of the stratum moleculare, the alveus and the white matter, revealing not only cellular, but also regional, selective distributions. The fact that LDH-5 immunoreactivity was high in astrocytes and occurred in regions where the highest uptake of 2-deoxyglucose was observed suggests that glucose uptake followed by lactate production may principally occur in these regions. CONCLUSION: These observations reveal a metabolic segregation, not only at the cellular but also at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons
    • 

    corecore