8,943 research outputs found
A Variable PV Broad Absorption Line and Quasar Outflow Energetics
Broad absorption lines (BALs) in quasar spectra identify high velocity
outflows that might exist in all quasars and could play a major role in
feedback to galaxy evolution. The viability of BAL outflows as a feedback
mechanism depends on their kinetic energies, as derived from the outflow
velocities, column densities, and distances from the central quasar. We
estimate these quantities for the quasar, Q1413+1143 (redshift ),
aided by the first detection of PV 1118,1128 BAL variability in
a quasar. In particular, PV absorption at velocities where the CIV trough does
not reach zero intensity implies that the CIV BAL is saturated and the absorber
only partially covers the background continuum source (with characteristic size
<0.01 pc). With the assumption of solar abundances, we estimate that the total
column density in the BAL outflow is log N_H > 22.3 (cm^-2). Variability in the
PV and saturated CIV BALs strongly disfavors changes in the ionization as the
cause of the BAL variability, but supports models with high-column density BAL
clouds moving across our lines of sight. The observed variability time of 1.6
yr in the quasar rest frame indicates crossing speeds >750 km/s and a radial
distance from the central black hole of <3.5 pc, if the crossing speeds are
Keplerian. The total outflow mass is ~4100 M_solar, the kinetic energy ~4x10^54
erg, and the ratio of the outflow kinetic energy luminosity to the quasar
bolometric luminosity is ~0.02 (at the minimum column density and maximum
distance), which might be sufficient for important feedback to the quasar's
host galaxy.Comment: 9 pages, 4 figures, accepted for publication in MNRA
Neglecting the porosity of hot-star winds can lead to underestimating mass-loss rates
Context: The mass-loss rate is a key parameter of massive stars. Adequate
stellar atmosphere models are required for spectral analyses and mass-loss
determinations. Present models can only account for the inhomogeneity of
stellar winds in the approximation of small-scale structures that are optically
thin. This treatment of ``microclumping'' has led to reducing empirical
mass-loss rates by factors of two and more. Aims: Stellar wind clumps can be
optically thick in spectral lines. We investigate how this ``macroclumping''
impacts on empirical mass-loss rates. Methods: The Potsdam Wolf-Rayet (PoWR)
model atmosphere code is generalized in the ``formal integral'' to account for
clumps that are not necessarily optically thin. Results: Optically thick clumps
reduce the effective opacity. This has a pronounced effect on the emergent
spectrum. Our modeling for the O-type supergiant zeta Puppis reveals that the
optically thin H-alpha line is not affected by wind porosity, but that the PV
resonance doublet becomes significantly weaker when macroclumping is taken into
account. The reported discrepancies between resonance-line and
recombination-line diagnostics can be resolved entirely with the macroclumping
modeling without downward revision of the mass-loss rate. Conclusions:
Mass-loss rates inferred from optically thin emission, such as the H-alpha line
in O stars, are not influenced by macroclumping. The strength of optically
thick lines, however, is reduced because of the porosity effects. Therefore,
neglecting the porosity in stellar wind modeling can lead to underestimating
empirical mass-loss rates.Comment: A&A (in press), see full abstract in the tex
A High-Velocity Narrow Absorption Line Outflow in the Quasar J212329.46-005052.9
We report on a variable high-velocity narrow absorption line outflow in the
redshift 2.3 quasar J2123-0050. Five distinct outflow systems are detected with
velocity shifts from -9710 to -14,050 km/s and CIV 1548,1551 line widths of
FWHM = 62-164 km/s. These data require five distinct outflow structures with
similar kinematics, physical conditions and characteristic sizes of order
0.01-0.02 pc. The most likely location is ~5 pc from the quasar. The
coordinated line variations in <0.63 yr (rest) are best explained by global
changes in the outflow ionization caused by changes in the quasar's ionizing
flux. The absence of strong X-ray absorption shows that radiative shielding is
not needed to maintain the moderate ionizations and therefore, apparently, it
is not needed to facilitate the radiative acceleration to high speeds. The
kinetic energy yield of this flow is at least two orders of magnitude too low
to be important for feedback to the host galaxy's evolution.Comment: 20 pages. In press with MNRA
Improved preparation of 9-octadecenes
Organic synthesis of cis-9 and trans-9 octadecenes from oleyl alcohol and elaidyl alcohol, respectively, by conversion to tosylates followed by lithium aluminum hydride reductio
The Wide-Angle Outflow of the Lensed z = 1.51 AGN HS 0810+2554
We present results from X-ray observations of the gravitationally lensed z =
1.51 AGN HS 0810+2554 performed with the Chandra X-ray Observatory and
XMM-Newton. Blueshifted absorption lines are detected in both observations at
rest-frame energies ranging between ~1-12 keV at > 99% confidence. The inferred
velocities of the outflowing components range between ~0.1c and ~0.4c. A strong
emission line at ~6.8 keV accompanied by a significant absorption line at ~7.8
keV is also detected in the Chandra observation. The presence of these lines is
a characteristic feature of a P-Cygni profile supporting the presence of an
expanding outflowing highly ionized iron absorber in this quasar. Modeling of
the P-Cygni profile constrains the covering factor of the wind to be > 0.6,
assuming disk shielding. A disk-reflection component is detected in the
XMM-Newton observation accompanied by blueshifted absorption lines. The
XMM-Newton observation constrains the inclination angle to be < 45 degrees at
90% confidence, assuming the hard excess is due to blurred reflection from the
accretion disk. The detection of an ultrafast and wide-angle wind in an AGN
with intrinsic narrow absorption lines (NALs) would suggest that quasar winds
may couple efficiently with the intergalactic medium and provide significant
feedback if ubiquitous in all NAL and BAL quasars. We estimate the mass-outflow
rate of the absorbers to lie in the range of 1.5 and 3.4 Msolar/yr for the two
observations. We find the fraction of kinetic to electromagnetic luminosity
released by HS 0810+2554 is large (epsilon = 9 (-6,+8)) suggesting that
magnetic driving is likely a significant contributor to the acceleration of
this outflow.Comment: 27 pages, 13 figures, Accepted for publication in Ap
Simultaneous brachial diplegia and rotational vertigo due to combined spinal anterior and vertebrobasilar embolism
The Impact of Prior Assumptions on Bayesian Estimates of Inflation Parameters and the Expected Gravitational Waves Signal from Inflation
There has been much recent discussion, and some confusion, regarding the use
of existing observational data to estimate the likelihood that next-generation
cosmic microwave background (CMB) polarization experiments might detect a
nonzero tensor signal, possibly associated with inflation. We examine this
issue in detail here in two different ways: (1) first we explore the effect of
choice of different parameter priors on the estimation of the tensor-to-scalar
ratio r and other parameters describing inflation, and (2) we examine the
Bayesian complexity in order to determine how effectively existing data can
constrain inflationary parameters. We demonstrate that existing data are not
strong enough to render full inflationary parameter estimates in a
parametrization- and prior-independent way and that the predicted tensor signal
is particularly sensitive to different priors. For parametrizations where the
Bayesian complexity is comparable to the number of free parameters we find that
a flat prior on the scale of inflation (which is to be distinguished from a
flat prior on the tensor-to-scalar ratio) leads us to infer a larger, and in
fact slightly nonzero tensor contribution at 68% confidence level. However, no
detection is claimed. Our results demonstrate that all that is statistically
relevant at the current time is the (slightly enhanced) upper bound on r, and
we stress that the data remain consistent with r = 0.Comment: 9 pages, 5 figures. Section added on Bayesian complexity. Matches
published versio
Moving inhomogeneous envelopes of stars
Massive stars are extremely luminous and drive strong winds, blowing a large
part of their matter into the galactic environment before they finally explode
as a supernova. Quantitative knowledge of massive star feedback is required to
understand our Universe as we see it. Traditionally, massive stars have been
studied under the assumption that their winds are homogeneous and stationary,
largely relying on the Sobolev approximation. However, observations with the
newest instruments, together with progress in model calculations, ultimately
dictate a cardinal change of this paradigm: stellar winds are highly
inhomogeneous. Hence, we are now advancing to a new stage in our understanding
of stellar winds. Using the foundations laid by V.V. Sobolev and his school, we
now update and further develop the stellar spectral analysis techniques. New
sophisticated 3-D models of radiation transfer in inhomogeneous expanding media
elucidate the physics of stellar winds and improve classical empiric mass-loss
rate diagnostics. Applications of these new techniques to multiwavelength
observations of massive stars yield consistent and robust stellar wind
parameters.Comment: slightly corrected version of the review for the special issue "V.V.
Sobolev and his Legacy", Journal of Quantitative Spectroscopy and Radiative
Transfe
- …
