135 research outputs found
Effects of CMB temperature uncertainties on cosmological parameter estimation
We estimate the effect of the experimental uncertainty in the measurement of
the temperature of the cosmic microwave background (CMB) on the extraction of
cosmological parameters from future CMB surveys. We find that even for an ideal
experiment limited only by cosmic variance up to l = 2500 for both the
temperature and polarisation measurements, the projected cosmological parameter
errors are remarkably robust against the uncertainty of 1 mK in the FIRAS
instrument's CMB temperature monopole measurement. The maximum degradation in
sensitivity is 20%, for the baryon density estimate, relative to the case in
which the monopole is known infinitely well. While this degradation is
acceptable, we note that reducing the uncertainty in the current temperature
measurement by a factor of five will bring it down to the per cent level. We
also estimate the effect of the uncertainty in the dipole temperature
measurement. Assuming the overall calibration of the data to be dominated by
the dipole error of 0.2% from FIRAS, the sensitivity degradation is
insignificant and does not exceed 10% in any parameter direction.Comment: 12 pages, 2 figures, uses iopart.cls, v2: added discussion of CMB
dipole uncertainty, version accepted by JCA
Using BBN in cosmological parameter extraction from CMB: a forecast for Planck
Data from future high-precision Cosmic Microwave Background (CMB)
measurements will be sensitive to the primordial Helium abundance . At the
same time, this parameter can be predicted from Big Bang Nucleosynthesis (BBN)
as a function of the baryon and radiation densities, as well as a neutrino
chemical potential. We suggest to use this information to impose a
self-consistent BBN prior on and determine its impact on parameter
inference from simulated Planck data. We find that this approach can
significantly improve bounds on cosmological parameters compared to an analysis
which treats as a free parameter, if the neutrino chemical potential is
taken to vanish. We demonstrate that fixing the Helium fraction to an arbitrary
value can seriously bias parameter estimates. Under the assumption of
degenerate BBN (i.e., letting the neutrino chemical potential vary), the
BBN prior's constraining power is somewhat weakened, but nevertheless allows us
to constrain with an accuracy that rivals bounds inferred from present
data on light element abundances.Comment: 14 pages, 4 figures; v2: minor changes, matches published versio
Cosmological constraints on neutrino plus axion hot dark matter
We use observations of the cosmological large-scale structure to derive
limits on two-component hot dark matter consisting of mass-degenerate neutrinos
and hadronic axions, both components having velocity dispersions corresponding
to their respective decoupling temperatures. We restrict the data samples to
the safely linear regime, in particular excluding the Lyman-alpha forest. Using
standard Bayesian inference techniques we derive credible regions in the
two-parameter space of m_a and sum(m_nu). Marginalising over sum(m_nu) provides
m_a < 1.2 eV (95% C.L.). In the absence of axions the same data and methods
give sum(m_nu) < 0.65 eV (95% C.L.). We also derive limits on m_a for a range
of axion-pion couplings up to one order of magnitude larger or smaller than the
hadronic value.Comment: 13 pages, 2 figures, uses iopart.cl
Observational bounds on the cosmic radiation density
We consider the inference of the cosmic radiation density, traditionally
parameterised as the effective number of neutrino species N_eff, from precision
cosmological data. Paying particular attention to systematic effects, notably
scale-dependent biasing in the galaxy power spectrum, we find no evidence for a
significant deviation of N_eff from the standard value of N_eff^0=3.046 in any
combination of cosmological data sets, in contrast to some recent conclusions
of other authors. The combination of all available data in the linear regime
prefers, in the context of a ``vanilla+N_eff'' cosmological model,
1.1<N_eff<4.8 (95% C.L.) with a best-fit value of 2.6. Adding data at smaller
scales, notably the Lyman-alpha forest, we find 2.2<N_eff<5.8 (95% C.L.) with
3.8 as the best fit. Inclusion of the Lyman-alpha data shifts the preferred
N_eff upwards because the sigma_8 value derived from the SDSS Lyman-alpha data
is inconsistent with that inferred from CMB. In an extended cosmological model
that includes a nonzero mass for N_eff neutrino flavours, a running scalar
spectral index and a w parameter for the dark energy, we find 0.8<N_eff<6.1
(95% C.L.) with 3.0 as the best fit.Comment: 23 pages, 3 figures, uses iopart.cls; v2: 1 new figure, references
added, matches published versio
Neutrinos in Non-linear Structure Formation - The Effect on Halo Properties
We use N-body simulations to find the effect of neutrino masses on halo
properties, and investigate how the density profiles of both the neutrino and
the dark matter components change as a function of the neutrino mass. We
compare our neutrino density profiles with results from the N-one-body method
and find good agreement. We also show and explain why the Tremaine-Gunn bound
for the neutrinos is not saturated. Finally we study how the halo mass function
changes as a function of the neutrino mass and compare our results with the
Sheth-Tormen semi-analytic formulae. Our results are important for surveys
which aim at probing cosmological parameters using clusters, as well as future
experiments aiming at measuring the cosmic neutrino background directly.Comment: 20 pages, 8 figure
A Bayesian view of the current status of dark matter direct searches
Bayesian statistical methods offer a simple and consistent framework for
incorporating uncertainties into a multi-parameter inference problem. In this
work we apply these methods to a selection of current direct dark matter
searches. We consider the simplest scenario of spin-independent elastic WIMP
scattering, and infer the WIMP mass and cross-section from the experimental
data with the essential systematic uncertainties folded into the analysis. We
find that when uncertainties in the scintillation efficiency of Xenon100 have
been accounted for, the resulting exclusion limit is not sufficiently
constraining to rule out the CoGeNT preferred parameter region, contrary to
previous claims. In the same vein, we also investigate the impact of
astrophysical uncertainties on the preferred WIMP parameters. We find that
within the class of smooth and isotropic WIMP velocity distributions, it is
difficult to reconcile the DAMA and the CoGeNT preferred regions by tweaking
the astrophysics parameters alone. If we demand compatibility between these
experiments, then the inference process naturally concludes that a high value
for the sodium quenching factor for DAMA is preferred.Comment: 37 pages, 14 figures and 7 tables. Replacement for matching the
version accepted for publicatio
WMAP 5-year constraints on lepton asymmetry and radiation energy density: Implications for Planck
In this paper we set bounds on the radiation content of the Universe and
neutrino properties by using the WMAP-5 year CMB measurements complemented with
most of the existing CMB and LSS data (WMAP5+All),imposing also self-consistent
BBN constraints on the primordial helium abundance. We consider lepton
asymmetric cosmological models parametrized by the neutrino degeneracy
parameter and the variation of the relativistic degrees of freedom, due to
possible other physical processes occurred between BBN and structure formation
epochs. We find that WMAP5+All data provides strong bounds on helium mass
fraction and neutrino degeneracy parameter that rivals the similar bounds
obtained from the conservative analysis of the present data on helium
abundance. We also find a strong correlation between the matter energy density
and the redshift of matter-radiation equality, z_re, showing that we observe
non-zero equivalent number of relativistic neutrinos mainly via the change of
the of z_re, rather than via neutrino anisotropic stress claimed by the WMAP
team. We forecast that the CMB temperature and polarization measurements
observed with high angular resolutions and sensitivities by the future Planck
satellite will reduce the errors on these parameters down to values fully
consistent with the BBN bounds
Nonlinear corrections to the cosmological matter power spectrum and scale-dependent galaxy bias: implications for parameter estimation
We explore and compare the performances of two nonlinear correction and
scale-dependent biasing models for the extraction of cosmological information
from galaxy power spectrum data, especially in the context of beyond-LCDM
cosmologies. The first model is the well known Q model, first applied in the
analysis of 2dFGRS data. The second, the P model, is inspired by the halo
model, in which nonlinear evolution and scale-dependent biasing are
encapsulated in a single non-Poisson shot noise term. We find that while both
models perform equally well in providing adequate correction for a range of
galaxy clustering data in standard LCDM cosmology and in extensions with
massive neutrinos, the Q model can give unphysical results in cosmologies
containing a subdominant free-streaming dark matter whose temperature depends
on the particle mass, e.g., relic thermal axions, unless a suitable prior is
imposed on the correction parameter. This last case also exposes the danger of
analytic marginalisation, a technique sometimes used in the marginalisation of
nuisance parameters. In contrast, the P model suffers no undesirable effects,
and is the recommended nonlinear correction model also because of its physical
transparency.Comment: 21 pages, 8 figures, uses iopart.cls; v2: 22 pages, matches published
versio
Light Sterile Neutrinos: A White Paper
This white paper addresses the hypothesis of light sterile neutrinos based on
recent anomalies observed in neutrino experiments and the latest astrophysical
data
- …