3,157 research outputs found
Gauge Couplings at High Temperature and the Relic Gravitino Abundance
In higher-dimensional supersymmetric theories gauge couplings of the
effective four-dimensional theory are determined by expectation values of
scalar fields. We find that at temperatures above a critical temperature ,
which depends on the supersymmetry breaking mass scales, gauge couplings
decrease like T^{-\a}, \a > 1. This has important cosmological
consequences. In particular it leads to a relic gravitino density which becomes
independent of the reheating temperature for . For small gravitino
masses, m_{3/2} \ll m_{\gl}, the mass density of stable gravitinos is
essentially determined by the gluino mass. The observed value of cold dark
matter, \O_{\rm CDM}h^2 \sim 0.1, is obtained for gluino masses m_{\gl} =
{\cal O}(1 {\rm TeV}).Comment: 11 pages, 2 figures, comment on supersymmetry breaking mechanisms and
two references adde
Transport Coefficients of the Yukawa One Component Plasma
We present equilibrium molecular-dynamics computations of the thermal
conductivity and the two viscosities of the Yukawa one-component plasma. The
simulations were performed within periodic boundary conditions and Ewald sums
were implemented for the potentials, the forces, and for all the currents which
enter the Kubo formulas. For large values of the screening parameter, our
estimates of the shear viscosity and the thermal conductivity are in good
agreement with the predictions of the Chapman-Enskog theory.Comment: 11 pages, 2 figure
Theory of Interaction of Memory Patterns in Layered Associative Networks
A synfire chain is a network that can generate repeated spike patterns with
millisecond precision. Although synfire chains with only one activity
propagation mode have been intensively analyzed with several neuron models,
those with several stable propagation modes have not been thoroughly
investigated. By using the leaky integrate-and-fire neuron model, we
constructed a layered associative network embedded with memory patterns. We
analyzed the network dynamics with the Fokker-Planck equation. First, we
addressed the stability of one memory pattern as a propagating spike volley. We
showed that memory patterns propagate as pulse packets. Second, we investigated
the activity when we activated two different memory patterns. Simultaneous
activation of two memory patterns with the same strength led the propagating
pattern to a mixed state. In contrast, when the activations had different
strengths, the pulse packet converged to a two-peak state. Finally, we studied
the effect of the preceding pulse packet on the following pulse packet. The
following pulse packet was modified from its original activated memory pattern,
and it converged to a two-peak state, mixed state or non-spike state depending
on the time interval
Detection of the compressed primary stellar wind in eta Carinae
A series of three HST/STIS spectroscopic mappings, spaced approximately one
year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving
outward from eta Carinae. We identify these arcs with the shell-like
structures, seen in the 3D hydrodynamical simulations, formed by compression of
the primary wind by the secondary wind during periastron passages.Comment: Accepted for publication in the Astrophysical Journal Letter
Monte Carlo simulations of the screening potential of the Yukawa one-component plasma
A Monte Carlo scheme to sample the screening potential H(r) of Yukawa plasmas
notably at short distances is presented. This scheme is based on an importance
sampling technique. Comparisons with former results for the Coulombic
one-component plasma are given. Our Monte Carlo simulations yield an accurate
estimate of H(r) as well for short range and long range interparticle
distances.Comment: to be published in Journal of Physics A: Mathematical and Genera
- …