3,157 research outputs found

    Gauge Couplings at High Temperature and the Relic Gravitino Abundance

    Full text link
    In higher-dimensional supersymmetric theories gauge couplings of the effective four-dimensional theory are determined by expectation values of scalar fields. We find that at temperatures above a critical temperature TT_*, which depends on the supersymmetry breaking mass scales, gauge couplings decrease like T^{-\a}, \a > 1. This has important cosmological consequences. In particular it leads to a relic gravitino density which becomes independent of the reheating temperature for TR>TT_R > T_*. For small gravitino masses, m_{3/2} \ll m_{\gl}, the mass density of stable gravitinos is essentially determined by the gluino mass. The observed value of cold dark matter, \O_{\rm CDM}h^2 \sim 0.1, is obtained for gluino masses m_{\gl} = {\cal O}(1 {\rm TeV}).Comment: 11 pages, 2 figures, comment on supersymmetry breaking mechanisms and two references adde

    Transport Coefficients of the Yukawa One Component Plasma

    Full text link
    We present equilibrium molecular-dynamics computations of the thermal conductivity and the two viscosities of the Yukawa one-component plasma. The simulations were performed within periodic boundary conditions and Ewald sums were implemented for the potentials, the forces, and for all the currents which enter the Kubo formulas. For large values of the screening parameter, our estimates of the shear viscosity and the thermal conductivity are in good agreement with the predictions of the Chapman-Enskog theory.Comment: 11 pages, 2 figure

    Theory of Interaction of Memory Patterns in Layered Associative Networks

    Full text link
    A synfire chain is a network that can generate repeated spike patterns with millisecond precision. Although synfire chains with only one activity propagation mode have been intensively analyzed with several neuron models, those with several stable propagation modes have not been thoroughly investigated. By using the leaky integrate-and-fire neuron model, we constructed a layered associative network embedded with memory patterns. We analyzed the network dynamics with the Fokker-Planck equation. First, we addressed the stability of one memory pattern as a propagating spike volley. We showed that memory patterns propagate as pulse packets. Second, we investigated the activity when we activated two different memory patterns. Simultaneous activation of two memory patterns with the same strength led the propagating pattern to a mixed state. In contrast, when the activations had different strengths, the pulse packet converged to a two-peak state. Finally, we studied the effect of the preceding pulse packet on the following pulse packet. The following pulse packet was modified from its original activated memory pattern, and it converged to a two-peak state, mixed state or non-spike state depending on the time interval

    Detection of the compressed primary stellar wind in eta Carinae

    Get PDF
    A series of three HST/STIS spectroscopic mappings, spaced approximately one year apart, reveal three partial arcs in [Fe II] and [Ni II] emissions moving outward from eta Carinae. We identify these arcs with the shell-like structures, seen in the 3D hydrodynamical simulations, formed by compression of the primary wind by the secondary wind during periastron passages.Comment: Accepted for publication in the Astrophysical Journal Letter

    Monte Carlo simulations of the screening potential of the Yukawa one-component plasma

    Full text link
    A Monte Carlo scheme to sample the screening potential H(r) of Yukawa plasmas notably at short distances is presented. This scheme is based on an importance sampling technique. Comparisons with former results for the Coulombic one-component plasma are given. Our Monte Carlo simulations yield an accurate estimate of H(r) as well for short range and long range interparticle distances.Comment: to be published in Journal of Physics A: Mathematical and Genera
    corecore