477 research outputs found

    Chandra Observations of a Young Embedded Magnetic B Star in the rho Ophiuchus Cloud

    Full text link
    This paper reports on an analysis of two Chandra X-ray observations of the young magnetic B star rho Ophiuchus S1. X-ray emission from the star was detected in both observations. The average flux was almost the same in both, but during each observation the flux showed significant time variations by a factor of two on timescales of 20-40 ks. Each spectrum could be fit by either an absorbed power-law model with a photon index of ~3 or a thin-thermal plasma model with a temperature of ~2 keV and an extremely low metal abundance (<~0.1 solar). The spectrum of the first observation has a weak-line feature at about 6.8 keV, which might correspond to highly ionized iron Kalpha. In contrast, the spectrum of the second observation apparently shows a weak edge absorption component at E~4 keV. The continuum emission and log LX/Lbol ~ -6 are similar to those of young intermediate-mass stars (Herbig Ae/Be stars), although the presence of a strong magnetic field (inferred from the detection of non-thermal radio emission) has drawn an analogy between rho Ophiuchus S1 and magnetic chemically peculiar (MCP) stars. If the X-ray emission is thermal, the small abundances that we derived might be related to the inverse first-ionization potential (FIP) effect, though there is no significant trend as a function of FIP from our model fits. If the emission is non-thermal, it might be produced by high-energy electrons in the magnetosphere.Comment: 13 pages, 6 figures, To appear in the October issue of PASJ (vol.55, No. 5

    Centimeter Polarimetry of the R Coronae Australis Region

    Full text link
    Circularly polarized 3.5 cm continuum emission was detected toward three radio sources in the R CrA region using the Very Large Array. The Class I protostar IRS 5b persistently showed polarized radio emission with a constant helicity over 8 yr, which suggests that its magnetosphere has a stable configuration. There is a good correlation between the Stokes I and Stokes V fluxes, and the fractional polarization is about 0.17. During active phases the fractional polarization is a weakly decreasing function of Stokes I flux, which suggests that IRS 5b is phenomenologically similar to other types of flare stars such as RS CVn binaries. The variability timescale of the polarized flux is about a month, and the magnetosphere of IRS 5b must be very large in size. The Class I protostar IRS 7A was detected once in circularly polarized radio emission, even though IRS 7A drives a thermal radio jet. This detection implies that the radio emission from the magnetosphere of a young protostar can escape the absorption by the partially ionized wind at least once in a while. The properties of IRS 7A and IRS 5b suggests that Class I protostars have organized peristellar magnetic fields of a few kilogauss and that the detectability of magnetospheric emission may depend on the evolutionary status of protostar. Also reported is the detection of circularly polarized radio emission toward the variable radio source B5.Comment: To appear in the Astrophysical Journa

    The Suzaku Observations of SS Cygni in Quiescence and Outburst

    Full text link
    We present results from the Suzaku observations of the dwarf nova SS Cyg in quiescence and outburst in 2005 November. Owing to high sensitivity of the HXD PIN detector and high spectral resolution of the XIS, we have determined parameters of the plasma with unprecedented precision. The maximum temperature of the plasma in quiescence 20.4 +4.0-2.6 (stat.) +/- 3.0 (sys.) keV is significantly higher than that in outburst 6.0 +0.2-1.3 keV. The elemental abundances are close to the solar ones for the medium-Z elements (Si, S, Ar) whereas they decline both in lighter and heavier elements. Those of oxygen and iron are 0.46 and 0.37 solar, respectively. That of carbon is exceptionally high and 2 solar at least. The solid angle of the reflector subtending over the optically thin thermal plasma is Omega/2\pi = 1.7+/-0.2 (stat.) +/-0.1 (sys.) in quiescence. A 6.4 keV iron Ka line is resolved into a narrow and broad components. These facts indicate that both the white dwarf and the accretion disk contribute to the continuum reflection and the 6.4 keV iron Ka line. We consider the standard optically thin boundary layer as the most plausible picture for the plasma configuration in quiescence. The solid angle of the reflector in outburst Omega/2\pi = 0.9 +0.5-0.4 and a broad 6.4 keV iron line indicates that the reflection in outburst originates from the accretion disk and an equatorial accretion belt. From the energy width of the 6.4 keV line, we consider the optically thin thermal plasma in outburst as being distributed on the accretion disk like solar coronae.Comment: 28 pages, 15 figures, accepted for publication in PASJ Suzaku 3rd special issue Pdf of this paper can be downloaded from http://www.astro.isas.jaxa.jp/~ishida/Papers/sscyg_sub2.pd

    Eclipse and Collapse of the Colliding Wind X-ray Emission from Eta Carinae

    Get PDF
    X-ray emission from the massive stellar binary system, Eta Carinae, drops strongly around periastron passage; the event is called the X-ray minimum. We launched a focused observing campaign in early 2009 to understand the mechanism of causing the X-ray minimum. During the campaign, hard X-ray emission (<10 keV) from Eta Carinae declined as in the previous minimum, though it recovered a month earlier. Extremely hard X-ray emission between 15-25 keV, closely monitored for the first time with the Suzaku HXD/PIN, decreased similarly to the hard X-rays, but it reached minimum only after hard X-ray emission from the star had already began to recover. This indicates that the X-ray minimum is produced by two composite mechanisms: the thick primary wind first obscured the hard, 210 keV thermal X-ray emission from the wind-wind collision (WWC) plasma; the WWC activity then decays as the two stars reach periastron

    Star Formation in Orion's L1630 Cloud: an Infrared and Multi-epoch X-ray Study

    Full text link
    X-ray emission is characteristic of young stellar objects (YSOs) and is known to be highly variable. We investigate, via an infrared and multi-epoch X-ray study of the L1630 dark cloud, whether and how X-ray variability in young stellar objects is related to protostellar evolutionary state. We have analyzed 11 Chandra X-ray Observatory observations, obtained over the course of four years and totaling ~240 ks exposure time, targeting the eruptive Class I YSO V1647 Ori in L1630. We used 2MASS and Spitzer data to identify and classify IR counterparts to L1630 X-ray sources and identified a total of 52 X-ray emitting YSOs with IR counterparts, including 4 Class I sources and 1 Class 0/I source. We have detected cool (< 3 MK) plasma, possibly indicative of accretion shocks, in three classical T Tauri stars. A subsample of 27 X-ray-emitting YSOs were covered by 9 of the 11 Chandra observations targeting V1647 Ori and vicinity. For these 27 YSOs, we have constructed X-ray light curves spanning approximately four years. These light curves highlight the variable nature of pre-main sequence X-ray emitting young stars; many of the L1630 YSOs vary by orders of magnitude in count rate between observations. We discuss possible scenarios to explain apparent trends between various X-ray spectral properties, X-ray variance and YSO classification.Comment: Accepted for publication in ApJS; 52 pages, 20 figure

    Modelling the Central Constant Emission X-ray component of eta Carinae

    Full text link
    The X-ray emission of η\eta Carinae shows multiple features at various spatial and temporal scales. The central constant emission (CCE) component is centred on the binary and arises from spatial scales much smaller than the bipolar Homunculus nebula, but likely larger than the central wind--wind collision region between the stars as it does not vary over the \sim2-3 month X-ray minimum when it can be observed. Using large-scale 3D smoothed particle hydrodynamics (SPH) simulations, we model both the colliding-wind region between the stars, and the region where the secondary wind collides with primary wind ejected from the previous periastron passage. The simulations extend out to one hundred semimajor axes and make two limiting assumptions (strong coupling and no coupling) about the influence of the primary radiation field on the secondary wind. We perform 3D radiative transfer calculations on the SPH output to synthesize the X-ray emission, with the aim of reproducing the CCE spectrum. For the preferred primary mass-loss rate M˙A8.5×104\dot{M}_A\approx8.5\times10^{-4} M_\odot yr1^{-1}, the model spectra well reproduce the observation as the strong- and no-coupling spectra bound the CCE observation for longitude of periastron ω252\omega\approx252^\circ, and bound/converge on the observation for ω90\omega\approx90^\circ. This suggests that η\eta Carinae has moderate coupling between the primary radiation and secondary wind, that both the region between the stars and the comoving collision on the backside of the secondary generate the CCE, and that the CCE cannot place constraints on the binary's line of sight. We also discuss comparisons with common X-ray fitting parameters.Comment: 14 pages, 15 figures, accepted for publication in MNRA

    On the Weak-Wind Problem in Massive Stars: X-ray Spectra Reveal a Massive Hot Wind in \mu\ Columbae

    Get PDF
    \mu\ Columbae is a prototypical weak-wind O-star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS-S instrument and a low resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive, hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O-stars. Therefore, the ``weak-wind problem''---identified from cool wind UV/optical spectra---is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma---the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within 5 stellar radii. Our results challenge the idea that some OB stars are ``weak-wind'' stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays.Comment: Accepted for publication in ApJ Letter
    corecore