5 research outputs found
Cognitive behaviour therapy plus aerobic exercise training to increase activity in patients with myotonic dystrophy type 1 (DM1) compared to usual care (OPTIMISTIC):Study protocol for randomised controlled trial
Peer reviewedPublisher PD
Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1:a multicentre, single-blind, randomised trial
Background:
Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults and leads to severe fatigue, substantial physical functional impairment, and restricted social participation. In this study, we aimed to determine whether cognitive behavioural therapy optionally combined with graded exercise compared with standard care alone improved the health status of patients with myotonic dystrophy type 1.
Methods:
We did a multicentre, single-blind, randomised trial, at four neuromuscular referral centres with experience in treating patients with myotonic dystrophy type 1 located in Paris (France), Munich (Germany), Nijmegen (Netherlands), and Newcastle (UK). Eligible participants were patients aged 18 years and older with a confirmed genetic diagnosis of myotonic dystrophy type 1, who were severely fatigued (ie, a score of ≥35 on the checklist-individual strength, subscale fatigue). We randomly assigned participants (1:1) to either cognitive behavioural therapy plus standard care and optional graded exercise or standard care alone. Randomisation was done via a central web-based system, stratified by study site. Cognitive behavioural therapy focused on addressing reduced patient initiative, increasing physical activity, optimising social interaction, regulating sleep–wake patterns, coping with pain, and addressing beliefs about fatigue and myotonic dystrophy type 1. Cognitive behavioural therapy was delivered over a 10-month period in 10–14 sessions. A graded exercise module could be added to cognitive behavioural therapy in Nijmegen and Newcastle. The primary outcome was the 10-month change from baseline in scores on the DM1-Activ-c scale, a measure of capacity for activity and social participation (score range 0–100). Statistical analysis of the primary outcome included all participants for whom data were available, using mixed-effects linear regression models with baseline scores as a covariate. Safety data were presented as descriptives. This trial is registered with ClinicalTrials.gov, number NCT02118779.
Findings:
Between April 2, 2014, and May 29, 2015, we randomly assigned 255 patients to treatment: 128 to cognitive behavioural therapy plus standard care and 127 to standard care alone. 33 (26%) of 128 assigned to cognitive behavioural therapy also received the graded exercise module. Follow-up continued until Oct 17, 2016. The DM1-Activ-c score increased from a mean (SD) of 61·22 (17·35) points at baseline to 63·92 (17·41) at month 10 in the cognitive behavioural therapy group (adjusted mean difference 1·53, 95% CI −0·14 to 3·20), and decreased from 63·00 (17·35) to 60·79 (18·49) in the standard care group (−2·02, −4·02 to −0·01), with a mean difference between groups of 3·27 points (95% CI 0·93 to 5·62, p=0·007). 244 adverse events occurred in 65 (51%) patients in the cognitive behavioural therapy group and 155 in 63 (50%) patients in the standard care alone group, the most common of which were falls (155 events in 40 [31%] patients in the cognitive behavioural therapy group and 71 in 33 [26%] patients in the standard care alone group). 24 serious adverse events were recorded in 19 (15%) patients in the cognitive behavioural therapy group and 23 in 15 (12%) patients in the standard care alone group, the most common of which were gastrointestinal and cardiac.
Interpretation:
Cognitive behavioural therapy increased the capacity for activity and social participation in patients with myotonic dystrophy type 1 at 10 months. With no curative treatment and few symptomatic treatments, cognitive behavioural therapy could be considered for use in severely fatigued patients with myotonic dystrophy type 1.
Funding:
The European Union Seventh Framework Programme
Cognitive behavioural therapy with optional graded exercise therapy in patients with severe fatigue with myotonic dystrophy type 1: a multicentre, single-blind, randomised trial
Background: Myotonic dystrophy type 1 is the most common form of muscular dystrophy in adults and leads to severe fatigue, substantial physical functional impairment, and restricted social participation. In this study, we aimed to determine whether cognitive behavioural therapy optionally combined with graded exercise compared with standard care alone improved the health status of patients with myotonic dystrophy type 1. Methods: We did a multicentre, single-blind, randomised trial, at four neuromuscular referral centres with experience in treating patients with myotonic dystrophy type 1 located in Paris (France), Munich (Germany), Nijmegen (Netherlands), and Newcastle (UK). Eligible participants were patients aged 18 years and older with a confirmed genetic diagnosis of myotonic dystrophy type 1, who were severely fatigued (ie, a score of ≥35 on the checklist-individual strength, subscale fatigue). We randomly assigned participants (1:1) to either cognitive behavioural therapy plus standard care and optional graded exercise or standard care alone. Randomisation was done via a central web-based system, stratified by study site. Cognitive behavioural therapy focused on addressing reduced patient initiative, increasing physical activity, optimising social interaction, regulating sleep–wake patterns, coping with pain, and addressing beliefs about fatigue and myotonic dystrophy type 1. Cognitive behavioural therapy was delivered over a 10-month period in 10–14 sessions. A graded exercise module could be added to cognitive behavioural therapy in Nijmegen and Newcastle. The primary outcome was the 10-month change from baseline in scores on the DM1-Activ-c scale, a measure of capacity for activity and social participation (score range 0–100). Statistical analysis of the primary outcome included all participants for whom data were available, using mixed-effects linear regression models with baseline scores as a covariate. Safety data were presented as descriptives. This trial is registered with ClinicalTrials.gov, number NCT02118779. Findings: Between April 2, 2014, and May 29, 2015, we randomly assigned 255 patients to treatment: 128 to cognitive behavioural therapy plus standard care and 127 to standard care alone. 33 (26%) of 128 assigned to cognitive behavioural therapy also received the graded exercise module. Follow-up continued until Oct 17, 2016. The DM1-Activ-c score increased from a mean (SD) of 61·22 (17·35) points at baseline to 63·92 (17·41) at month 10 in the cognitive behavioural therapy group (adjusted mean difference 1·53, 95% CI −0·14 to 3·20), and decreased from 63·00 (17·35) to 60·79 (18·49) in the standard care group (−2·02, −4·02 to −0·01), with a mean difference between groups of 3·27 points (95% CI 0·93 to 5·62, p=0·007). 244 adverse events occurred in 65 (51%) patients in the cognitive behavioural therapy group and 155 in 63 (50%) patients in the standard care alone group, the most common of which were falls (155 events in 40 [31%] patients in the cognitive behavioural therapy group and 71 in 33 [26%] patients in the standard care alone group). 24 serious adverse events were recorded in 19 (15%) patients in the cognitive behavioural therapy group and 23 in 15 (12%) patients in the standard care alone group, the most common of which were gastrointestinal and cardiac. Interpretation: Cognitive behavioural therapy increased the capacity for activity and social participation in patients with myotonic dystrophy type 1 at 10 months. With no curative treatment and few symptomatic treatments, cognitive behavioural therapy could be considered for use in severely fatigued patients with myotonic dystrophy type 1. Funding: The European Union Seventh Framework Programme
MSH3 modifies somatic instability and disease severity in Huntington’s and myotonic dystrophy type 1
Huntington’s disease and myotonic dystrophy type 1. A recent Huntington’s disease genome-wide association study found
rs557874766, an imputed single nucleotide polymorphism located within a polymorphic 9 bp tandem repeat in MSH3/DHFR,
as the variant most significantly associated with progression in Huntington’s disease. Using Illumina sequencing in Huntington’s
disease and myotonic dystrophy type 1 subjects, we show that rs557874766 is an alignment artefact, the minor allele for which
corresponds to a three-repeat allele in MSH3 exon 1 that is associated with a reduced rate of somatic CAG CTG expansion
(P = 0.004) and delayed disease onset (P = 0.003) in both Huntington’s disease and myotonic dystrophy type 1, and slower
progression (P = 3.86 10 7) in Huntington’s disease. RNA-Seq of whole blood in the Huntington’s disease subjects found
that repeat variants are associated with MSH3 and DHFR expression. A transcriptome-wide association study in the
Huntington’s disease cohort found increased MSH3 and DHFR expression are associated with disease progression. These results
suggest that variation in the MSH3 exon 1 repeat region influences somatic expansion and disease phenotype in Huntington’s
disease and myotonic dystrophy type 1, and suggests a common DNA repair mechanism operates in both repeat expansion
diseases.UK DementiaResearch Institute/[]//Reino UnidoMedical Research Council/[MR/L010305/1]/MRC/Reino UnidoEuropean Union’s Seventh Framework Programme/[2012-305121]/FP7 2007-2013/Unión EuropeaRosetrees Trust/[JS16/M574]//Reino UnidoUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto de Investigaciones en Salud (INISA