122 research outputs found

    Development of a novel method for visualizing restricted diffusion using subtraction of apparent diffusion coefficient values

    Get PDF
    In order to visualize restricted diffusion, the present study developed a novel method called 'apparent diffusion coefficient (ADC) subtraction method (ASM)' and compared it with diffusion kurtosis imaging (DKI). The diffusion-weighted images of physiological saline, in addtion to bio-phatoms of low cell density and the highest cell density were obtained using two sequences with different effective diffusion times. Then, the calculated ADC values were subtracted. The mean values and standard deviations (SD) of the ADC values of physiological saline, low cell density and the highest cell density phantoms were 2.95 +/- 0.08x10(-3), 1.90 +/- 0.35x10(-3) and 0.79 +/- 0.05x10(-3) mm(2)/sec, respectively. The mean kurtosis values and SD of DKI were 0.04 +/- 0.01, 0.44 +/- 0.13 and 1.27 +/- 0.03, respectively. The ASM and SD values were 0.25 +/- 0.20x10(4), 0.51 +/- 0.41x10(4) and 4.80 +/- 4.51x10(4) (sec/mm(2))(2), respectively. Using bio-phantoms, the present study demonstrated that DKI exhibits restricted diffusion in the extracellular space. Similarly, ASM may reflect the extent of restricted diffusion in the extracellular space

    Development and Evaluation of a Short-time Imaging Method for the Clinical Study of the Apparent Diffusion Coefficient Subtraction Method

    Get PDF
    The apparent diffusion coefficient subtraction method (ASM) was developed as a new restricted diffusionweighted imaging technique for magnetic resonance imaging (MRI). The usefulness of the ASM has been established by in vitro basic research using a bio-phantom, and clinical research on the application of the ASM for the human body is needed. Herein, we developed a short-time sequence for ASM imaging of the heads of healthy volunteers (n=2), and we investigated the similarity between the obtained ASM images and diffusion kurtosis (DK) images to determine the utility of the ASM for clinical uses. This study appears to be the first to report ASM images of the human head. We observed that the short-time sequence for the ASM imaging of the head can be scanned in approx. 3 min at 1.5T MRI. The noise reduction effect of median filter processing was confirmed on the ASM images scanned by this sequence. The obtained ASM images showed a weak correlation with the DK images, indicating that the ASM images are restricted diffusion-weighted images. The new shorttime imaging sequence could thus be used in clinical studies applying the ASM

    Evaluation of the Imaging Process for a Novel Subtraction Method Using Apparent Diffusion Coefficient Values

    Get PDF
    Diffusion-weighted imaging may be used to obtain the apparent diffusion coefficient (ADC), which aids the diagnosis of cerebral infarction and tumors. An ADC reflects elements of free diffusion. Diffusion kurtosis imaging (DKI) has attracted attention as a restricted diffusion imaging technique. The ADC subtraction method (ASM) was developed to visualize restricted diffusion with high resolution by using two ADC maps taken with different diffusion times. We conducted the present study to provide a bridge between the reported basic ASM research and clinical research. We developed new imaging software for clinical use and evaluated its performance herein. This software performs the imaging process automatically and continuously at the pixel level, using ImageJ software. The new software uses a macro or a plugin which is compatible with various operating systems via a Java Virtual Machine. We tested the new imaging softwareā€™s performance by using a Jurkat cell bio-phantom, and the statistical evaluation of the performance clarified that the ASM values of 99.98% of the pixels in the bio-phantom and physiological saline were calculated accurately (p<0.001). The new software may serve as a useful tool for future clinical applications and restricted diffusion imaging research

    New fieldā€‘inā€‘field with two reference points method for whole breast radiotherapy: Dosimetric analysis and radiationā€‘induced skin toxicities assessment

    Get PDF
    The usefulness of the fieldā€‘inā€‘field with two reference points (FIF w/ 2RP) method, in which the dose reference points are set simultaneously at two positions in the irradiation field and the highā€‘dose range is completely eliminated, was examined in the present study with the aim of decreasing acute skin toxicity in adjuvant breast radiotherapy (RT). A total of 573 patients with breast cancer who underwent postoperative whole breast RT were classified into 178 cases with wedge (W) method, 142 cases with fieldā€‘inā€‘field without 2 reference points (FIF w/o 2RP) method and 253 cases with FIF w/ 2RP method. Using the FIF w/ 2RP method, the highā€‘dose range was the lowest among the three irradiation methods. The planning target volume (PTV) V105% and the breast PTV for evaluation (BPe) V105% decreased to 0.09 and 0.10%, respectively. The FIF w/ 2RP method vs. the FIF w/o 2RP method had a strong association (Ī·) with PTV V105% (Ī·=0.79; P<0.001) and BPe V105% (Ī·=0.76; P<0.001). The FIF w/ 2RP method had a significant impact on lowering the skin toxicity grade in weeks 3 and 4, and increasing the occurrence of skin toxicity grade 0. The FIF w/ 2RP method vs. the W method had a moderate association with skin toxicity grade at week 3 (Ī·=0.49; P<0.001). Using the FIF w/ 2RP method, the highā€‘dose range V105% of the target decreased to 0%, and skin adverse events were decreased in conjunction. For patients with earlyā€‘stage breast cancer, particularly patients with relatively smallā€‘sized breasts, the FIF w/ 2RP method may be an optimal irradiation method

    Investigation into the Effect of Breast Volume on Irradiation Dose Distribution in Asian Women with Breast Cancer

    Get PDF
    Reports on irradiation dose distribution in breast cancer radiotherapy with sufficient sample size are limited in Asian patients. Elucidating dose distribution in Asian patients is particularly important as their breast volume differs compared to patients in Europe and North America. Here, we examined dose distribution in the irradiation field relative to breast volume for three irradiation methods historically used in our facility. We investigated the influence of breast volume on each irradiation method for Asian women. A total of 573 women with early-stage breast cancer were treated with breast-conserving surgery and adjuvant radiotherapy. Three methods were compared: wedge (W), field-in-field (FIF), and wedge-field-in-field (W-FIF). In patients with small breast volume, FIF decreased low- and high-dose areas within the planning target volume, and increased optimal dose area more than W. In patients with medium and large breast volumes, FIF decreased high-dose area more than W. The absolute values of correlation coefficients of breast volume to low-, optimal-, and high-dose areas and mean dose were significantly lower in FIF than in W. The correlation coefficients of V107% were 0.00 and 0.28 for FIF and W, respectively. FIF is an excellent irradiation method that is less affected by breast volume than W in Asian breast cancer patients

    Evaluation of Fast Diffusion Kurtosis Imaging Using New Software Designed for Widespread Clinical Use

    Get PDF
    Clinical research using restricted diffusion-weighted imaging, especially diffusion kurtosis (DK) imaging, has been progressing, with reports on its effectiveness in the diagnostic imaging of cerebral infarctions, neurodegenerative diseases, and tumors, among others. However, the application of DK imaging in daily clinical practice has not spread because of the long imaging time required and the use of specific software for image creation. Herein, with the aim of promoting clinical research using DK imaging at any medical facility, we evaluated fast DK imaging using a new software program. We developed a new macro program that produces DK images using general-purpose, inexpensive software (Microsoft Excel and ImageJ), and we evaluated fast DK imaging using bio-phantoms and a healthy volunteer in clinical trials. The DK images created by the new software with diffusion-weighted images captured with short-time imaging sequences were similar to the original DK images captured with long-time imaging sequences. The DK images using three b-values, which can reduce the imaging time by 43%, were equivalent to the DK images using five b-values. The DK imaging technique developed herein might allow any medical facility to increase its daily clinical use of DK imaging and easily conduct clinical research

    A highly conserved SOX6 double binding site mediates SOX6 gene downregulation in erythroid cells

    Get PDF
    The Sox6 transcription factor plays critical roles in various cell types, including erythroid cells. Sox6-deficient mice are anemic due to impaired red cell maturation and show inappropriate globin gene expression in definitive erythrocytes. To identify new Sox6 target genes in erythroid cells, we used the known repressive double Sox6 consensus within the Īµy-globin promoter to perform a bioinformatic genome-wide search for similar, evolutionarily conserved motifs located within genes whose expression changes during erythropoiesis. We found a highly conserved Sox6 consensus within the Sox6 human gene promoter itself. This sequence is bound by Sox6 in vitro and in vivo, and mediates transcriptional repression in transient transfections in human erythroleukemic K562 cells and in primary erythroblasts. The binding of a lentiviral transduced Sox6FLAG protein to the endogenous Sox6 promoter is accompanied, in erythroid cells, by strong downregulation of the endogenous Sox6 transcript and by decreased in vivo chromatin accessibility of this region to the PstI restriction enzyme. These observations suggest that the negative Sox6 autoregulation, mediated by the double Sox6 binding site within its own promoter, may be relevant to control the Sox6 transcriptional downregulation that we observe in human erythroid cultures and in mouse bone marrow cells in late erythroid maturation
    • ā€¦
    corecore