29 research outputs found

    Targeted single-cell gene induction by optimizing the dually regulated CRE/loxP system by a newly defined heat-shock promoter and the steroid hormone in Arabidopsis thaliana

    Full text link
    Multicellular organisms rely on intercellular communication systems to organize their cellular functions. In studies focusing on intercellular communication, the key experimental techniques include the generation of chimeric tissue using transgenic DNA recombination systems represented by the CRE/loxP system. If an experimental system enables the induction of chimeras at highly targeted cell(s), it will facilitate the reproducibility and precision of experiments. However, multiple technical limitations have made this challenging. The stochastic nature of DNA recombination events, especially, hampers reproducible generation of intended chimeric patterns. Infrared laser-evoked gene operator (IR-LEGO), a microscopic system that irradiates targeted cells using an IR laser, can induce heat shock-mediated expression of transgenes, for example, CRE recombinase gene, in the cells. In this study, we developed a method that induces CRE/loxP recombination in the target cell(s) of plant roots and leaves in a highly specific manner. We combined IR-LEGO, an improved heat-shock-specific promoter, and dexamethasone-dependent regulation of CRE. The optimal IR-laser power and irradiation duration were estimated via exhaustive irradiation trials and subsequent statistical modeling. Under optimized conditions, CRE/loxP recombination was efficiently induced without cellular damage. We also found that the induction efficiency varied among tissue types and cellular sizes. The developed method offers an experimental system to generate a precisely designed chimeric tissue, and thus, will be useful for analyzing intercellular communication at high resolution in roots and leaves

    高齢がん患者の在宅移行期の文献レビュー

    Get PDF
    The purpose of this study was to characterize periods of hospital-to-home care transition for elderly cancer patients by extracting definitions of such periods and their characteristics as situations from the literature, and to discuss effective nursing support toward hospital-to-home care transition. Relevant research papers published within the period between 2010 and 2020 were searched for using Ichushi Web and PubMed. Descriptions related to periods of transition, characteristics of situations, and hindering/promoting factors were extracted without any changes and categorized based on descriptive content similarities. In these papers, a period of hospital-to-home care transition was described as 1 week to 1 year after discharge. As a situation, it was characterized as “a time when the patient rebuilds his/her life”, and therefore, “a time of instability”. Factors hindering and promoting hospital-to-home care transition were represented by6categories, which suggested the following commonalities between them : [ physical management],[patients’/families’ intentions],[home care systems],[other family members’ commitments to home care], [collaboration systems], and[nurses’ home care experience]

    Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan

    Get PDF
    IntroductionFatty acid oxidation disorders (FAODs) are rare diseases caused by defects in mitochondrial fatty acid oxidation (FAO) enzymes. While the efficacy of bezafibrate, a peroxisome proliferator-activated receptor agonist, on the in vitro FAO capacity has been reported, the in vivo efficacy remains controversial. Therefore, we conducted a clinical trial of bezafibrate in Japanese patients with FAODs.Materials and methodsThis trial was an open-label, non-randomized, and multicenter study of bezafibrate treatment in 6 patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and 2 patients with carnitine palmitoyltransferase-II (CPT-2) deficiency (median age, 8.2 years; ranging from 5.8 to 26.4 years). Bezafibrate was administered for 6 months following a 6-month observation period. The primary endpoint was the frequency of myopathic attacks, and the secondary endpoints were serum acylcarnitines (ACs, C14:1 or C16 + C18:1), creatine kinase (CK) levels, degree of muscle pain (VAS; visual analog scale) during myopathic attacks, and quality of life (QOL; evaluated using validated questionnaires).ResultsThe frequency of myopathic attacks after bezafibrate administration decreased in 3 patients, increased in 3, and did not change in 2. The CK, AC, and VAS values during attacks could be estimated in only three or four patients, but a half of the patients did not experience attacks before or after treatment. Changes in CK, AC, and VAS values varied across individuals. In contrast, three components of QOL, namely, physical functioning, role limitation due to physical problems (role physical), and social functioning, were significantly elevated. No adverse drug reactions were observed.ConclusionIn this study, the frequency of myopathic attacks and CK, AC, and VAS values during the attacks could not be evaluated due to several limitations, such as a small trial population. Our findings indicate that bezafibrate improves the QOL of patients with FAODs, but its efficacy must be examined in future investigations

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Photoelectron Holographic Atomic Arrangement Imaging of Cleaved Bimetal-intercalated Graphite Superconductor Surface

    Get PDF
    From the C 1s and K 2p photoelectron holograms, we directly reconstructed atomic images of the cleaved surface of a bimetal-intercalated graphite superconductor, (Ca, K)C8, which differed substantially from the expected bulk crystal structure based on x-ray diffraction (XRD) measurements. Graphene atomic images were collected in the in-plane cross sections of the layers 3.3 Å and 5.7 Å above the photoelectron emitter C atom and the stacking structures were determined as AB- and AA-type, respectively. The intercalant metal atom layer was found between two AA-stacked graphenes. The K atomic image revealing 2 × 2 periodicity, occupying every second centre site of C hexagonal columns, was reconstructed, and the Ca 2p peak intensity in the photoelectron spectra of (Ca, K)C8 from the cleaved surface was less than a few hundredths of the K 2p peak intensity. These observations indicated that cleavage preferentially occurs at the KC8 layers containing no Ca atoms
    corecore