7,278 research outputs found

    On the dynamics of vortex modes within magnetic islands

    Full text link
    Recent work investigating the interaction of magnetic islands with micro-turbulence has uncovered the striking observation of large scale vortex modes forming within the island structure [W.A. Hornsby {\it et al.}, Phys. Plasmas {\bf 17} 092301 (2010)]. These electrostatic vortices are found to be the size of the island and are oscillatory. It is this oscillatory behaviour and the presence of turbulence that leads us to believe that the dynamics are related to the Geodesic Acoustic Mode (GAM), and it is this link that is investigated in this paper. Here we derive an equation for the GAM in the MHD limit, in the presence of a magnetic island modified three-dimensional axisymmetric geometry. The eigenvalues and eigenfunctions are calculated numerically and then utilised to analyse the dynamics of oscillatory large-scale electrostatic potential structures seen in both linear and non-linear gyro-kinetic simulations

    Teleportation and entanglement distillation in the presence of correlation among bipartite mixed states

    Get PDF
    The teleportation channel associated with an arbitrary bipartite state denotes the map that represents the change suffered by a teleported state when the bipartite state is used instead of the ideal maximally entangled state for teleportation. This work presents and proves an explicit expression of the teleportation channel for the teleportation using Weyl's projective unitary representation of the space of 2n-tuples of numbers from Z/dZ for integers d>1, n>0, which has been known for n=1. This formula allows any correlation among the n bipartite mixed states, and an application shows the existence of reliable schemes for distillation of entanglement from a sequence of mixed states with correlation.Comment: 12 pages, 1 figur

    Vertex Operators in 4D Quantum Gravity Formulated as CFT

    Full text link
    We study vertex operators in 4D conformal field theory derived from quantized gravity, whose dynamics is governed by the Wess-Zumino action by Riegert and the Weyl action. Conformal symmetry is equal to diffeomorphism symmetry in the ultraviolet limit, which mixes positive-metric and negative-metric modes of the gravitational field and thus these modes cannot be treated separately in physical operators. In this paper, we construct gravitational vertex operators such as the Ricci scalar, defined as space-time volume integrals of them are invariant under conformal transformations. Short distance singularities of these operator products are computed and it is shown that their coefficients have physically correct sign. Furthermore, we show that conformal algebra holds even in the system perturbed by the cosmological constant vertex operator as in the case of the Liouville theory shown by Curtright and Thorn.Comment: 26 pages, rewrote review part concisely, added explanation

    Efecto del cambio climático sobre problemas fitosanitarios en caña de azúcar, maní y algodón: un abordaje binacional.

    Get PDF
    La roya marrón y la roya anaranjada de la caña de azúcar, la viruela tardía del maní y el picudo del algodonero son problemas fitosanitarios actuales y potenciales para estos cultivos industriales tanto en Argentina como en Brasil. En Argentina no se han realizado estudios sobre el efecto del cambio climático en cultivos que ocupan actualmente áreas bien definidas, con perspectivas de expandirse a otras áreas agroecológicas, generando flujos de patógenos y plagas en macroregiones abarcando ambos países. Para ello se elaboró un proyecto interinstitucional entre INTA y EMBRAPA cuyo objetivo principal es evaluar el impacto del cambio climático sobre enfermedades y plagas de cultivos de importancia para la agroindustria de Argentina y Brasil, intentando el desarrollo de alternativas de adaptación para su control en los escenarios climáticos futuros. La investigación y discusión en red entre Argentina y Brasil es una oportunidad indispensable para evitar esfuerzos innecesarios, integrando los resultados obtenidos con los diferentes cultivos de importancia para la agroindustria

    Supersymmetric Wilson Loops in IIB Matrix Model

    Get PDF
    We show that the supersymmetric Wilson loops in IIB matrix model give a transition operator from reduced supersymmetric Yang-Mills theory to supersymmetric space-time theory. In comparison with Green-Schwarz superstring we identify the supersymmetric Wilson loops with the asymptotic states of IIB superstring. It is pointed out that the supersymmetry transformation law of the Wilson loops is the inverse of that for the vertex operators of massless modes in the U(N) open superstring with Dirichlet boundary condition.Comment: 10 pages, Latex, minor typos correcte

    A Tuned and Scalable Fast Multipole Method as a Preeminent Algorithm for Exascale Systems

    Full text link
    Among the algorithms that are likely to play a major role in future exascale computing, the fast multipole method (FMM) appears as a rising star. Our previous recent work showed scaling of an FMM on GPU clusters, with problem sizes in the order of billions of unknowns. That work led to an extremely parallel FMM, scaling to thousands of GPUs or tens of thousands of CPUs. This paper reports on a a campaign of performance tuning and scalability studies using multi-core CPUs, on the Kraken supercomputer. All kernels in the FMM were parallelized using OpenMP, and a test using 10^7 particles randomly distributed in a cube showed 78% efficiency on 8 threads. Tuning of the particle-to-particle kernel using SIMD instructions resulted in 4x speed-up of the overall algorithm on single-core tests with 10^3 - 10^7 particles. Parallel scalability was studied in both strong and weak scaling. The strong scaling test used 10^8 particles and resulted in 93% parallel efficiency on 2048 processes for the non-SIMD code and 54% for the SIMD-optimized code (which was still 2x faster). The weak scaling test used 10^6 particles per process, and resulted in 72% efficiency on 32,768 processes, with the largest calculation taking about 40 seconds to evaluate more than 32 billion unknowns. This work builds up evidence for our view that FMM is poised to play a leading role in exascale computing, and we end the paper with a discussion of the features that make it a particularly favorable algorithm for the emerging heterogeneous and massively parallel architectural landscape

    Making a Universe

    Get PDF
    For understanding the origin of anisotropies in the cosmic microwave background, rules to construct a quantized universe is proposed based on the dynamical triangulation method of the simplicial quantum gravity. A dd-dimensional universe having the topology Dd D^d is created numerically in terms of a simplicial manifold with dd-simplices as the building blocks. The space coordinates of a universe are identified on the boundary surface Sd1 S^{d-1} , and the time coordinate is defined along the direction perpendicular to Sd1 S^{d-1} . Numerical simulations are made mainly for 2-dimensional universes, and analyzed to examine appropriateness of the construction rules by comparing to analytic results of the matrix model and the Liouville theory. Furthermore, a simulation in 4-dimension is made, and the result suggests an ability to analyze the observations on anisotropies by comparing to the scalar curvature correlation of a S2 S^2 -surface formed as the last scattering surface in the S3 S^3 universe.Comment: 27pages,18figures,using jpsj.st

    Recursion Relations in Liouville Gravity coupled to Ising Model satisfying Fusion Rules

    Full text link
    The recursion relations of 2D quantum gravity coupled to the Ising model discussed by the author previously are reexamined. We study the case in which the matter sector satisfies the fusion rules and only the primary operators inside the Kac table contribute. The theory involves unregularized divergences in some of correlators. We obtain the recursion relations which form a closed set among well-defined correlators on sphere, but they do not have a beautiful structure that the bosonized theory has and also give an inconsistent result when they include an ill-defined correlator with the divergence. We solve them and compute the several normalization independent ratios of the well-defined correlators, which agree with the matrix model results.Comment: Latex, 22 page

    RNA secondary structure prediction from multi-aligned sequences

    Full text link
    It has been well accepted that the RNA secondary structures of most functional non-coding RNAs (ncRNAs) are closely related to their functions and are conserved during evolution. Hence, prediction of conserved secondary structures from evolutionarily related sequences is one important task in RNA bioinformatics; the methods are useful not only to further functional analyses of ncRNAs but also to improve the accuracy of secondary structure predictions and to find novel functional RNAs from the genome. In this review, I focus on common secondary structure prediction from a given aligned RNA sequence, in which one secondary structure whose length is equal to that of the input alignment is predicted. I systematically review and classify existing tools and algorithms for the problem, by utilizing the information employed in the tools and by adopting a unified viewpoint based on maximum expected gain (MEG) estimators. I believe that this classification will allow a deeper understanding of each tool and provide users with useful information for selecting tools for common secondary structure predictions.Comment: A preprint of an invited review manuscript that will be published in a chapter of the book `Methods in Molecular Biology'. Note that this version of the manuscript may differ from the published versio
    corecore