1,301 research outputs found

    Effects of semiclassical spiral fluctuations on hole dynamics

    Full text link
    We investigate the dynamics of a single hole coupled to the spiral fluctuations related to the magnetic ground states of the antiferromagnetic J_1-J_2-J_3 Heisenberg model on a square lattice. Using exact diagonalization on finite size clusters and the self consistent Born approximation in the thermodynamic limit we find, as a general feature, a strong reduction of the quasiparticle weight along the spiral phases of the magnetic phase diagram. For an important region of the Brillouin Zone the hole spectral functions are completely incoherent, whereas at low energies the spectral weight is redistributed on several irregular peaks. We find a characteristic value of the spiral pitch, Q=(0.7,0.7)\pi, for which the available phase space for hole scattering is maximum. We argue that this behavior is due to the non trivial interference of the magnon assisted and the free hopping mechanism for hole motion, characteristic of a hole coupled to semiclassical spiral fluctuations.Comment: 6 pages, 5 figure

    Transport properties of a two impurity system: a theoretical approach

    Get PDF
    A system of two interacting cobalt atoms, at varying distances, was studied in a recent scanning tunneling microscope experiment by Bork et. al.[Nature Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all experimentally analyzed interatomic distances, the physics observed in these experiments. Our proposal is based on the two-impurity Anderson model, with the inclusion of a two-path geometry for charge transport. This many-body system is treated in the finite-U slave boson mean-field approximation and the logarithmic-discretization embedded-cluster approximation. We physically characterize the different charge transport regimes of this system at various interatomic distances and show that, as in the experiments, the features observed in the transport properties depend on the presence of two impurities but also on the existence of two conducting channels for electron transport. We interpret the splitting observed in the conductance as the result of the hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure

    Selfconsistent hybridization expansions for static properties of the Anderson impurity model

    Full text link
    By means of a projector-operator formalism we derive an approximation based on a self consistent hybridization expansion to study the ground state properties of the Anderson Impurity model. We applied the approximation to the general case of finite Coulomb repulsion UU, extending previous work with the same formalism in the infinite-UU case. The treatment provides a very accurate calculation of the ground state energy and their related zero temperature properties in the case in which UU is large enough, but still finite, as compared with the rest of energy scales involved in the model. The results for the valence of the impurity are compared with exact results that we obtain from equations derived using the Bethe ansatz and with a perturbative approach. The magnetization and magnetic susceptibility is also compared with Bethe ansatz results. In order to do this comparison, we also show how to regularize the Bethe ansatz integral equations necessary to calculate the impurity valence, for arbitrary values of the parameters.Comment: 8 pages, 5 figure

    Cl electrosorption on Ag(100): Lateral interactions and electrosorption valency from comparison of Monte Carlo simulations with chronocoulometry experiments

    Full text link
    We present Monte Carlo Simulations using an equilibrium lattice-gas model for the electrosorption of Cl on Ag(100) single-crystal surfaces. Fitting the simulated isotherms to chronocoulometry experiments, we extract parameters such as the electrosorption valency gamma and the next-nearest-neighbor lateral interaction energy phi_nnn. Both coverage-dependent and coverage independent gamma were previously studied assuming a constant phi_nnn [I. Abou Hamad, Th. Wandlowski, G. Brown, P.A. Rikvold, J. Electroanal. Chem. 554-555 (2003) 211]. Here, a self-consistent, entirely electrostatic picture of the lateral interactions with a coverage-dependent phi_nnn is developed, and a relationship between phi_nnn and gamma is investigated for Cl on Ag(100).Comment: Accepted for publication in Electrochimica Acta, 10 pages, 7 figures, 2 tables and an appendi

    Spin polaron in the J1-J2 Heisenberg model

    Full text link
    We have studied the validity of the spin polaron picture in the frustrated J1-J2 Heisenberg model. For this purpose, we have computed the hole spectral functions for the Neel, collinear, and disordered phases of this model, by means of the self-consistent Born approximation and Lanczos exact diagonalization on finite-size clusters. We have found that the spin polaron quasiparticle excitation is always well defined for the magnetically ordered Neel and collinear phases, even in the vicinity of the magnetic quantum critical points, where the local magnetization vanishes. As a general feature, the effect of frustration is to increase the amplitude of the multimagnon states that build up the spin polaron wave function, leading to the reduction of the quasiparticle coherence. Based on Lanczos results, we discuss the validity of the spin polaron picture in the disordered phase.Comment: 9 pages, 12 figure

    Effects of lateral diffusion on morphology and dynamics of a microscopic lattice-gas model of pulsed electrodeposition

    Full text link
    The influence of nearest-neighbor diffusion on the decay of a metastable low-coverage phase (monolayer adsorption) in a square lattice-gas model of electrochemical metal deposition is investigated by kinetic Monte Carlo simulations. The phase-transformation dynamics are compared to the well-established Kolmogorov-Johnson-Mehl-Avrami theory. The phase transformation is accelerated by diffusion, but remains in accord with the theory for continuous nucleation up to moderate diffusion rates. At very high diffusion rates the phase-transformation kinetic shows a crossover to instantaneous nucleation. Then, the probability of medium-sized clusters is reduced in favor of large clusters. Upon reversal of the supersaturation, the adsorbate desorbs, but large clusters still tend to grow during the initial stages of desorption. Calculation of the free energy of subcritical clusters by enumeration of lattice animals yields a quasi-equilibrium distribution which is in reasonable agreement with the simulation results. This is an improvement relative to classical droplet theory, which fails to describe the distributions, since the macroscopic surface tension is a bad approximation for small clusters.Comment: Minor corrections and modifications. 15 pages with 10 figures. Accepted for publication in the Journal of Chemical Physics, see http://jcp.aip.org/jcp

    A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone, and mycophenolate mofetil in primary adult liver transplant recipients: An interim report

    Get PDF
    Background. Tacrolimus (Tac) and mycophenolate mofetil (MMF) are newly approved immunosuppressive agents. However, the safety and efficacy of the combination of MMF and Tac in primary liver transplantation has not been determined. Methods. An Institutional Review Board-approved, open-label prospective randomized protocol was initiated to study the efficacy and toxicity of Tac and steroids (double-drug therapy) versus Tac, steroids, and MMF (triple-drug therapy) in primary adult liver transplant recipients. Both groups of patients began on the same doses of Tac and steroids. Patients randomized to triple-drug therapy also received 1 g of MMF twice a day. Results. Between August 1995 and January 1997, 200 patients were enrolled, 99 in double-drug therapy and 101 in triple-drug therapy. All patients were followed until May 1997, with a mean follow-up of 12.7 months. During the study period, 28 of 99 patients in double-drug therapy received MMF to control ongoing acute rejection, nephrotoxicity, and/or neurotoxicity. On the other hand, 61 patients in triple-drug therapy discontinued MMF for infection, myelosuppression, and/or gastrointestinal disturbances. By an 'intention-to-treat analysis,' the actuarial 1-year patient survival rate was 85.1% in double-drug therapy and 83.1% in triple-drug therapy (P=0.77). The actuarial 1-year graft survival rate was 80.2% for double-drug therapy and 79.2% for triple-drug therapy (P=0.77). Forty-one patients (41.4%) in double- drug therapy and 32 (31.7%) in triple-drug therapy had at least one episode of rejection, but this was not statistically significant (P=0.15). The mean maintenance dose of corticosteroids was slightly lower in triple-drug compared with double-drug therapy. Conclusion. Patient and graft survival rates were similar in both groups. There was a trend to a lower incidence of rejection, reduced nephrotoxicity, and a lesser amount of maintenance corticosteroids in triple-drug therapy compared with double-drug therapy

    1/T_1 nuclear relaxation time of \kappa-(BEDT-TTF)_ 2 Cu [N(CN)_2] Cl : effects of magnetic frustration

    Full text link
    We study the role played by the magnetic frustration in the antiferromagnetic phase of the organic salt \kappa-(BEDT-TTF)_ 2 Cu [N(CN)_2] Cl. Using the spatially anisotropic triangular Heisenberg model we analyze previous and new performed NMR experiments. We compute the 1/T_1 relaxation time by means of the modified spin wave theory. The strong suppression of the nuclear relaxation time observed experimentally under varying pressure and magnetic field is qualitatively well reproduced by the model. Our results suggest the existence of a close relation between the effects of pressure and magnetic frustration.Comment: 10 pages, 9 figures, to appear in Journal of Phys.: Condens Matte

    Predictors of Literacy and Attitudes Toward Reading Among Syrian Refugee Children in Jordan

    Get PDF
    Refugee children often face disruptions to their education before and during displacement. However, little is known about either levels or predictors of refugee children’s literacy or about their attitudes toward reading in low- or middle-income countries. To address this, we conducted in-home literacy assessments using the Holistic Assessment of Learning and Development Outcomes with 322 Syrian refugee mother–child dyads who lived in Jordan (child age range 4–8 years, M = 6.32 years, 50% female). Overall, the children had quite low levels of literacy, although they indicated a strong enthusiasm for reading. Child age, maternal education, and maternal ability to read all predicted child literacy, although maternal literacy predicted it only among children enrolled in school. Among those enrolled in school (64.9% of the total sample, 88.7% of those aged ≄ 6), students attending hybrid classes had better literacy than those attending either solely in-person or solely online, although the frequency of school attendance did not predict literacy. A less consistent pattern emerged for predicting children’s attitudes toward reading. Our results suggest an urgent need to improve literacy skills among refugee children in Jordan, as well as a need for validated measures of attitudes toward reading for use with Arabic-speaking youth. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13158-022-00334-x

    Coagulation factor XII protease domain crystal structure

    Get PDF
    Background: Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI.Objective: To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain.Methods and results: A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to ÎČ‐FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70‐loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short α‐helix in the 180‐loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates.Conclusions: These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation
    • 

    corecore