185 research outputs found
System-Level Scenarios for the Elucidation of T Cell-Mediated Germinal Center B Cell Differentiation
Learning from failure
We study decentralized learning in organizations. Decentralization is captured through a symmetry constraint on agents’ strategies. Among such attainable strategies, we solve for optimal and equilibrium strategies. We model the organization as a repeated game with imperfectly observable actions. A fixed but unknown subset of action profiles are successes and all other action profiles are failures. The game is played until either there is a success or the time horizon is reached. For any time horizon, including infinity, we demonstrate existence of optimal attainable strategies and show that they are Nash equilibria. For some time horizons, we can solve explicitly for the optimal attainable strategies and show uniqueness. The solution connects the learning behavior of agents to the fundamentals that characterize the organization: Agents in the organization respond more slowly to failure as the future becomes more important, the size of the organization increases and the probability of success decreases.Game theory
Inhibition of dendritic cell activation and modulation of T cell polarization by the platelet secretome
Platelet transfusions are a frequently administered therapy for especially hemato-oncological patients with thrombocytopenia. Next to their primary function in hemostasis, currently there is increased attention for the capacity of platelets to affect the function of various cells of the immune system. Here, we investigate the capacity of platelets to immuno-modulate monocyte-derived dendritic cells (moDC) as well as primary dendritic cells and effects on subsequent T cell responses. Platelets significantly inhibited pro-inflammatory (IL-12, IL-6, TNF alpha) and increased anti-inflammatory (IL-10) cytokine production of moDCs primed with toll-like receptor (TLR)-dependent and TLR-independent stimuli. Transwell assays and ultracentrifugation revealed that a soluble factor secreted by platelets, but not microvesicles, inhibited DC activation. Interestingly, platelet-derived soluble mediators also inhibited cytokine production by human ex vivo stimulated myeloid CD1c+ conventional DC2. Moreover, platelets and platelet-derived soluble mediators inhibited T cell priming and T helper differentiation toward an IFN gamma+ Th1 phenotype by moDCs. Overall, these results show that platelets are able to inhibit the pro-inflammatory properties of DCs, and may even induce an anti-inflammatory DC phenotype, with decreased T cell priming capacity by the DC. The results of this study provide more insight in the potential role of platelets in immune modulation, especially in the context of platelet transfusions.Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
- …