138 research outputs found

    Postmortem cardiac tissue maintains gene expression profile even after late harvesting

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression studies can be used to help identify disease-associated genes by comparing the levels of expressed transcripts between cases and controls, and to identify functional genetic variants (expression quantitative loci or eQTLs) by comparing expression levels between individuals with different genotypes. While many of these studies are performed in blood or lymphoblastoid cell lines due to tissue accessibility, the relevance of expression differences in tissues that are not the primary site of disease is unclear. Further, many eQTLs are tissue specific. Thus, there is a clear and compelling need to conduct gene expression studies in tissues that are specifically relevant to the disease of interest. One major technical concern about using autopsy-derived tissue is how representative it is of physiologic conditions, given the effect of postmortem interval on tissue degradation.</p> <p>Results</p> <p>In this study, we monitored the gene expression of 13 tissue samples harvested from a rapid autopsy heart (non-failed heart) and 7 from a cardiac explant (failed heart) through 24 hours of autolysis. The 24 hour autopsy simulation was designed to reflect a typical autopsy scenario where a body may begin cooling to ambient temperature for ~12 hours, before transportation and storage in a refrigerated room in a morgue. In addition, we also simulated a scenario wherein the body was left at room temperature for up to 24 hours before being found. A small fraction (< 2.5%) of genes showed fluctuations in expression over the 24 hr period and largely belong to immune and signal response and energy metabolism-related processes. Global expression analysis suggests that RNA expression is reproducible over 24 hours of autolysis with 95% genes showing < 1.2 fold change. Comparing the rapid autopsy to the failed heart identified 480 differentially expressed genes, including several types of collagens, lumican (<it>LUM</it>), natriuretic peptide A (<it>NPPA</it>) and connective tissue growth factor (<it>CTGF</it>), which allows for the clear separation between failing and non-failing heart based on gene expression profiles.</p> <p>Conclusions</p> <p>Our results demonstrate that RNA from autopsy-derived tissue, even up to 24 hours of autolysis, can be used to identify biologically relevant expression pattern differences, thus serving as a practical source for gene expression experiments.</p

    Discovery of noncanonical translation initiation sites through mass spectrometric analysis of protein N termini

    Get PDF
    Translation initiation generally occurs at AUG codons in eukaryotes, although it has been shown that non-AUG or non-canonical translation initiation can also occur. However, the evidence for noncanonical translation initiation sites (TISs) is largely indirect and based on ribosome profiling (Ribo-seq) studies. Here, using a strategy specifically designed to enrich N termini of proteins, we demonstrate that many human proteins are translated at noncanonical TISs. The large majority of TISs that mapped to 5' untranslated regions were noncanonical and led to N-terminal extension of annotated proteins or translation of upstream small open reading frames (uORF). It has been controversial whether the amino acid corresponding to the start codon is incorporated at the TIS or methionine is still incorporated. We found that methionine was incorporated at almost all noncanonical TISs identified in this study. Comparison of the TISs determined through mass spectrometry with ribosome profiling data revealed that about two-thirds of the novel annotations were indeed supported by the available ribosome profiling data. Sequence conservation across species and a higher abundance of noncanonical TISs than canonical ones in some cases suggests that the noncanonical TISs can have biological functions. Overall, this study provides evidence of protein translation initiation at noncanonical TISs and argues that further studies are required for elucidation of functional implications of such noncanonical translation initiation

    Fatal myocardial microabscesses caused by methicillin-resistant Staphylococcus aureus in a burn patient

    Get PDF
    AbstractBacteremia- or sepsis-associated myocardial abscess is often an incidental postmortem diagnosis in patients who die of overwhelming septicemia. Myocardial abscess is more rarely the immediate cause of death as a consequence of abscess rupture or the cause of arrhythmia. We report a 66-year-old female who succumbed to sudden cardiac death with a hemodynamically stable methicillin-resistant Staphylococcus aureus (MRSA) bacteremia, while in recovery after an accidental thermal burn. Autopsy revealed extensive myocardial abscesses and an abscess in the pineal gland. Myocardial microabscesses should be considered a rare cause of sudden cardiac death in patients with hemodynamically stable MRSA bacteremia

    A benchmark for microRNA quantification algorithms using the OpenArray platform

    Get PDF
    miRcompData R package source. The source code for the miRcompData R package, also available at: http://bioconductor.org/packages/miRcompData/ . (GZ 8765 kb

    The diagnosis of hypertrophic cardiomyopathy by cardiovascular magnetic resonance

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most common genetic disease of the heart. HCM is characterized by a wide range of clinical expression, ranging from asymptomatic mutation carriers to sudden cardiac death as the first manifestation of the disease. Over 1000 mutations have been identified, classically in genes encoding sarcomeric proteins. Noninvasive imaging is central to the diagnosis of HCM and cardiovascular magnetic resonance (CMR) is increasingly used to characterize morphologic, functional and tissue abnormalities associated with HCM. The purpose of this review is to provide an overview of the clinical, pathological and imaging features relevant to understanding the diagnosis of HCM. The early and overt phenotypic expression of disease that may be identified by CMR is reviewed. Diastolic dysfunction may be an early marker of the disease, present in mutation carriers prior to the development of left ventricular hypertrophy (LVH). Late gadolinium enhancement by CMR is present in approximately 60% of HCM patients with LVH and may provide novel information regarding risk stratification in HCM. It is likely that integrating genetic advances with enhanced phenotypic characterization of HCM with novel CMR techniques will importantly improve our understanding of this complex disease

    Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases

    Get PDF
    Abstract Inflammatory diseases of the aorta include routine atherosclerosis, aortitis, periaortitis, and atherosclerosis with excessive inflammatory responses, such as inflammatory atherosclerotic aneurysms. The nomenclature and histologic features of these disorders are reviewed and discussed. In addition, diagnostic criteria are provided to distinguish between these disorders in surgical pathology specimens. An initial classification scheme is provided for aortitis and periaortitis based on the pattern of the inflammatory infiltrate: granulomatous/giant cell pattern, lymphoplasmacytic pattern, mixed inflammatory pattern, and the suppurative pattern. These inflammatory patterns are discussed in relation to specific systemic diseases including giant cell arteritis, Takayasu arteritis, granulomatosis with polyangiitis (Wegener's), rheumatoid arthritis, sarcoidosis, ankylosing spondylitis, Cogan syndrome, Behcet's disease, relapsing polychondritis, syphilitic aortitis, and bacterial and fungal infections
    corecore