480 research outputs found

    Pressure coefficients of Raman modes of carbon nanotubes resolved by chirality: Environmental effect on graphene sheet

    Get PDF
    Studies of the mechanical properties of single-walled carbon nanotubes are hindered by the availability only of ensembles of tubes with a range of diameters. Tunable Raman excitation spectroscopy picks out identifiable tubes. Under high pressure, the radial breathing mode shows a strong environmental effect shown here to be largely independent of the nature of the environment . For the G-mode, the pressure coefficient varies with diameter consistent with the thick-wall tube model. However, results show an unexpectedly strong environmental effect on the pressure coefficients. Reappraisal of data for graphene and graphite gives the G-mode Grueuneisen parameter gamma = 1.34 and the shear deformation parameter beta = 1.34.Comment: Submitted to Physical Review

    Photoreflectance and surface photovoltage spectroscopy of beryllium-doped GaAs/AlAs multiple quantum wells

    Get PDF
    We present an optical study of beryllium delta-doped GaAs/AlAs multiple quantum well (QW) structures designed for sensing terahertz (THz) radiation. Photoreflectance (PR), surface photovoltage (SPV), and wavelength-modulated differential surface photovoltage (DSPV) spectra were measured in the structures with QW widths ranging from 3 to 20 nm and doping densities from 2×10(10) to 5×10(12) cm(–2) at room temperature. The PR spectra displayed Franz-Keldysh oscillations which enabled an estimation of the electric-field strength of ~20 kV/cm at the sample surface. By analyzing the SPV spectra we have determined that a buried interface rather than the sample surface mainly governs the SPV effect. The DSPV spectra revealed sharp features associated with excitonic interband transitions which energies were found to be in a good agreement with those calculated including the nonparabolicity of the energy bands. The dependence of the exciton linewidth broadening on the well width and the quantum index has shown that an average half monolayer well width fluctuations is mostly predominant broadening mechanism for QWs thinner than 10 nm. The line broadening in lightly doped QWs, thicker than 10 nm, was found to arise from thermal broadening with the contribution from Stark broadening due to random electric fields of the ionized impurities in the structures. We finally consider the possible influence of strong internal electric fields, QW imperfections, and doping level on the operation of THz sensors fabricated using the studied structures. © 2005 American Institute of Physic

    Raman excitation spectroscopy of carbon nanotubes: effects of pressure medium and pressure

    Full text link
    Raman excitation and emission spectra for the radial breathing mode (RBM) are reported, together with a preliminary analysis. From the position of the peaks on the two-dimensional plot of excitation resonance energy against Raman shift, the chiral indices (m, n) for each peak are identified. Peaks shift from their positions in air when different pressure media are added - water, hexane, sulphuric acid - and when the nanotubes are unbundled in water with surfactant and sonication. The shift is about 2 - 3 cm-1 in RBM frequency, but unexpectedly large in resonance energy, being spread over up to 100meV for a given peak. This contrasts with the effect of pressure. The shift of the peaks of semiconducting nanotubes in water under pressure is orthogonal to the shift from air to water. This permits the separation of the effects of the pressure medium and the pressure, and will enable the true pressure coefficients of the RBM and the other Raman peaks for each (m, n) to be established unambiguously.Comment: 6 pages, 3 Figures, Proceedings of EHPRG 2011 (Paris

    Recognizing and managing a malignant hyperthermia crisis: guidelines from the European Malignant Hyperthermia Group

    Get PDF
    Survival from a malignant hyperthermia (MH) crisis is highly dependent on early recognition and prompt action. MH crises are very rare and an increasing use of total i.v. anaesthesia is likely to make it even rarer, leading to the potential risk of reduced awareness of MH. In addition, dantrolene, the cornerstone of successful MH treatment, is unavailable in large areas around the world thereby increasing the risk of MH fatalities in these areas. The European Malignant Hyperthermia Group collected and reviewed all guidelines available from the various MH centres in order to provide a consensus document. The guidelines consist of two textboxes: Box 1 on recognizing MH and Box 2 on the treatment of an MH crisi

    Recombination via transition metals in solar silicon : the significance of hydrogen-metal reactions and lattice sites of metal atoms

    Get PDF
    The move towards lower cost sources of solar silicon has intensified efforts to investigate the possibilities of passivating or reducing the recombination activity caused by deep states associated with transition metals. This is particularly important for the case of the slow diffusing metals early in the periodic sequence which are not removed by conventional gettering. In this paper we examine reactions between hydrogen and transition metals and discuss the possibility of such reactions during cell processing. We analyse the case of hydrogenation of iron in p-type Si and show that FeH can form under non-equilibrium conditions. We consider the electrical activity of the slow diffusing metals Ti, V and Mo, how this is affected in the presence of hydrogen, and the stability of TM-H complexes formed. Finally we discuss recent experiments which indicate that resiting of some transition metals from the interstitial to substitutional site is possible in the presence of excess vacancies, leading to a reduction in recombination activity

    The CMS Tracker Readout Front End Driver

    Full text link
    The Front End Driver, FED, is a 9U 400mm VME64x card designed for reading out the Compact Muon Solenoid, CMS, silicon tracker signals transmitted by the APV25 analogue pipeline Application Specific Integrated Circuits. The FED receives the signals via 96 optical fibers at a total input rate of 3.4 GB/sec. The signals are digitized and processed by applying algorithms for pedestal and common mode noise subtraction. Algorithms that search for clusters of hits are used to further reduce the input rate. Only the cluster data along with trigger information of the event are transmitted to the CMS data acquisition system using the S-LINK64 protocol at a maximum rate of 400 MB/sec. All data processing algorithms on the FED are executed in large on-board Field Programmable Gate Arrays. Results on the design, performance, testing and quality control of the FED are presented and discussed

    Energy levels in polarization superlattices: a comparison of continuum strain models

    Full text link
    A theoretical model for the energy levels in polarization superlattices is presented. The model includes the effect of strain on the local polarization-induced electric fields and the subsequent effect on the energy levels. Two continuum strain models are contrasted. One is the standard strain model derived from Hooke's law that is typically used to calculate energy levels in polarization superlattices and quantum wells. The other is a fully-coupled strain model derived from the thermodynamic equation of state for piezoelectric materials. The latter is more complete and applicable to strongly piezoelectric materials where corrections to the standard model are significant. The underlying theory has been applied to AlGaN/GaN superlattices and quantum wells. It is found that the fully-coupled strain model yields very different electric fields from the standard model. The calculated intersubband transition energies are shifted by approximately 5 -- 19 meV, depending on the structure. Thus from a device standpoint, the effect of applying the fully-coupled model produces a very measurable shift in the peak wavelength. This result has implications for the design of AlGaN/GaN optical switches.Comment: Revtex
    corecore