141 research outputs found

    Seljačka kultura i urbanizacija u Jugoslaviji

    Get PDF

    Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER

    Full text link
    We describe 280 GHz bolometric detector arrays that instrument the balloon-borne polarimeter SPIDER. A primary science goal of SPIDER is to measure the large-scale B-mode polarization of the cosmic microwave background in search of the cosmic-inflation, gravitational-wave signature. 280 GHz channels aid this science goal by constraining the level of B-mode contamination from galactic dust emission. We present the focal plane unit design, which consists of a 16×\times16 array of conical, corrugated feedhorns coupled to a monolithic detector array fabricated on a 150 mm diameter silicon wafer. Detector arrays are capable of polarimetric sensing via waveguide probe-coupling to a multiplexed array of transition-edge-sensor (TES) bolometers. The SPIDER receiver has three focal plane units at 280 GHz, which in total contains 765 spatial pixels and 1,530 polarization sensitive bolometers. By fabrication and measurement of single feedhorns, we demonstrate 14.7∘^{\circ} FHWM Gaussian-shaped beams with <<1% ellipticity in a 30% fractional bandwidth centered at 280 GHz. We present electromagnetic simulations of the detection circuit, which show 94% band-averaged, single-polarization coupling efficiency, 3% reflection and 3% radiative loss. Lastly, we demonstrate a low thermal conductance bolometer, which is well-described by a simple TES model and exhibits an electrical noise equivalent power (NEP) = 2.6 ×\times 10−17^{-17} W/Hz\sqrt{\mathrm{Hz}}, consistent with the phonon noise prediction.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 201

    Microwave multiplexing on the Keck Array

    Get PDF
    We describe an on-sky demonstration of a microwave-multiplexing readout system in one of the receivers of the Keck Array, a polarimetry experiment observing the cosmic microwave background at the South Pole. During the austral summer of 2018-2019, we replaced the time-division multiplexing readout system with microwave-multiplexing components including superconducting microwave resonators coupled to radio-frequency superconducting quantum interference devices at the sub-Kelvin focal plane, coaxial-cable plumbing and amplification between room temperature and the cold stages, and a SLAC Microresonator Radio Frequency system for the warm electronics. In the range 5-6 GHz, a single coaxial cable reads out 528 channels. The readout system is coupled to transition-edge sensors, which are in turn coupled to 150-GHz slot-dipole phased-array antennas. Observations began in April 2019, and we report here on an initial characterization of the system performance.Comment: 9 pages, 11 figures, Accepted by the Journal of Low Temperature Physics (Proceedings of the 18th International Workshop on Low Temperature Detectors

    The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and its Implications for Structure Growth

    Full text link
    We present new measurements of cosmic microwave background (CMB) lensing over 94009400 sq. deg. of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB dataset, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3%2.3\% precision (43σ43\sigma significance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. The baseline spectrum is well fit by a lensing amplitude of Alens=1.013±0.023A_{\mathrm{lens}}=1.013\pm0.023 relative to the Planck 2018 CMB power spectra best-fit Λ\LambdaCDM model and Alens=1.005±0.023A_{\mathrm{lens}}=1.005\pm0.023 relative to the ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination S8CMBLâ‰ĄÏƒ8(Ωm/0.3)0.25S^{\mathrm{CMBL}}_8 \equiv \sigma_8 \left({\Omega_m}/{0.3}\right)^{0.25} of S8CMBL=0.818±0.022S^{\mathrm{CMBL}}_8= 0.818\pm0.022 from ACT DR6 CMB lensing alone and S8CMBL=0.813±0.018S^{\mathrm{CMBL}}_8= 0.813\pm0.018 when combining ACT DR6 and Planck NPIPE CMB lensing power spectra. These results are in excellent agreement with Λ\LambdaCDM model constraints from Planck or ACT DR4+WMAP\text{ACT DR4} + \text{WMAP} CMB power spectrum measurements. Our lensing measurements from redshifts z∌0.5z\sim0.5--55 are thus fully consistent with Λ\LambdaCDM structure growth predictions based on CMB anisotropies probing primarily z∌1100z\sim1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshiftsComment: 45+21 pages, 50 figures. Prepared for submission to ApJ. Also see companion papers Madhavacheril et al and MacCrann et a
    • 

    corecore