544 research outputs found

    Discovery of the Acoustic Faraday Effect in Superfluid 3He-B

    Full text link
    We report the discovery of the acoustic Faraday effect in superfluid 3He-B. The observation of this effect provides the first direct evidence for propagating transverse acoustic waves in liquid 3He, a mode first predicted by Landau in 1957. The Faraday rotation is large and observable because of spontaneously broken spin-orbit symmetry in 3He-B. We compare the experimental observations with a simulation of the transverse acoustic impedance that includes the field-induced circular birefringence of transverse waves.Comment: 4 pages in RevTex plus 3 postscript figures; new version includes: minor corrections to the text and an updated of list of reference

    Allowed and forbidden transitions in artificial hydrogen and helium atoms

    Full text link
    The strength of radiative transitions in atoms is governed by selection rules. Spectroscopic studies of allowed transitions in hydrogen and helium provided crucial evidence for the Bohr's model of an atom. Forbidden transitions, which are actually allowed by higher-order processes or other mechanisms, indicate how well the quantum numbers describe the system. We apply these tests to the quantum states in semiconductor quantum dots (QDs), which are regarded as artificial atoms. Electrons in a QD occupy quantized states in the same manner as electrons in real atoms. However, unlike real atoms, the confinement potential of the QD is anisotropic, and the electrons can easily couple with phonons of the material. Understanding the selection rules for such QDs is an important issue for the manipulation of quantum states. Here we investigate allowed and forbidden transitions for phonon emission in one- and two-electron QDs (artificial hydrogen and helium atoms) by electrical pump-and-probe experiments, and find that the total spin is an excellent quantum number in artificial atoms. This is attractive for potential applications to spin based information storage.Comment: slightly longer version of Nature 419, 278 (2002

    New Chiral Phases of Superfluid 3He Stabilized by Anisotropic Silica Aerogel

    Get PDF
    A rich variety of Fermi systems condense by forming bound pairs, including high temperature [1] and heavy fermion [2] superconductors, Sr2RuO4 [3], cold atomic gases [4], and superfluid 3He [5]. Some of these form exotic quantum states having non-zero orbital angular momentum. We have discovered, in the case of 3He, that anisotropic disorder, engineered from highly porous silica aerogel, stabilizes a chiral superfluid state that otherwise would not exist. Additionally, we find that the chiral axis of this state can be uniquely oriented with the application of a magnetic field perpendicular to the aerogel anisotropy axis. At suffciently low temperature we observe a sharp transition from a uniformly oriented chiral state to a disordered structure consistent with locally ordered domains, contrary to expectations for a superfluid glass phase [6].Comment: 6 pages, 4 figure, and Supplementary Informatio

    Imaging Coulomb Islands in a Quantum Hall Interferometer

    Full text link
    In the Quantum Hall regime, near integer filling factors, electrons should only be transmitted through spatially-separated edge states. However, in mesoscopic systems, electronic transmission turns out to be more complex, giving rise to a large spectrum of magnetoresistance oscillations. To explain these observations, recent models put forward that, as edge states come close to each other, electrons can hop between counterpropagating edge channels, or tunnel through Coulomb islands. Here, we use scanning gate microscopy to demonstrate the presence of quantum Hall Coulomb islands, and reveal the spatial structure of transport inside a quantum Hall interferometer. Electron islands locations are found by modulating the tunneling between edge states and confined electron orbits. Tuning the magnetic field, we unveil a continuous evolution of active electron islands. This allows to decrypt the complexity of high magnetic field magnetoresistance oscillations, and opens the way to further local scale manipulations of quantum Hall localized states

    Genetic diversity and host alternation of the egg parasitoid Oencyrtus pityocampae between the pine processionary moth and caper bug

    Get PDF
    Research ArticleThe increased use of molecular tools for species identification in recent decades revealed that each of many apparently generalist parasitoids are actually a complex of morphologically similar congeners, most of which have a rather narrow host range. Ooencyrtus pityocampae (OP), an important egg parasitoid of the pine processionary moth (PPM), is considered a generalist parasitoid. OP emerges from PPM eggs after winter hibernation, mainly in spring and early summer, long before the eggs of the next PPM generation occurs. The occurrence of OP in eggs of the variegated caper bug (CB) Stenozygum coloratum in spring and summer suggests that OP populations alternate seasonally between PPM and CB. However, the identity of OP population on CB eggs seemed uncertain; unlike OP-PPM populations, the former displayed apparently high male/female ratios and lack of attraction to the PPM sex pheromone. We studied the molecular identities of the two populations since the morphological identification of the genus Ooencyrtus, and OP in particular, is difficult. Sequencing of COI and ITS2 DNA fragments and AFLP analysis of individuals from both hosts revealed no apparent differences between the OP-PPM and the OP-CB populations for both the Israeli and the Turkish OPs, which therefore supported the possibility of host alternation. Sequencing data extended our knowledge of the genetic structure of OP populations in the Mediterranean area, and revealed clear separation between East and West Mediterranean populations. The overall level of genetic diversity was rather small, with the Israeli population much less diverse than all others; possible explanations for this finding are discussed. The findings support the possibility of utilizing the CB and other hosts for enhancing biological control of the PPMinfo:eu-repo/semantics/publishedVersio

    Interleukin-6 gene (IL-6): a possible role in brain morphology in the healthy adult brain

    Get PDF
    Background: Cytokines such as interleukin 6 (IL-6) have been implicated in dual functions in neuropsychiatric disorders. Little is known about the genetic predisposition to neurodegenerative and neuroproliferative properties of cytokine genes. In this study the potential dual role of several IL-6 polymorphisms in brain morphology is investigated. Methodology: In a large sample of healthy individuals (N = 303), associations between genetic variants of IL-6 (rs1800795; rs1800796, rs2069833, rs2069840) and brain volume (gray matter volume) were analyzed using voxel-based morphometry (VBM). Selection of single nucleotide polymorphisms (SNPs) followed a tagging SNP approach (e.g., Stampa algorigthm), yielding a capture 97.08% of the variation in the IL-6 gene using four tagging SNPs. Principal findings/results: In a whole-brain analysis, the polymorphism rs1800795 (−174 C/G) showed a strong main effect of genotype (43 CC vs. 150 CG vs. 100 GG; x = 24, y = −10, z = −15; F(2,286) = 8.54, puncorrected = 0.0002; pAlphaSim-corrected = 0.002; cluster size k = 577) within the right hippocampus head. Homozygous carriers of the G-allele had significantly larger hippocampus gray matter volumes compared to heterozygous subjects. None of the other investigated SNPs showed a significant association with grey matter volume in whole-brain analyses. Conclusions/significance: These findings suggest a possible neuroprotective role of the G-allele of the SNP rs1800795 on hippocampal volumes. Studies on the role of this SNP in psychiatric populations and especially in those with an affected hippocampus (e.g., by maltreatment, stress) are warranted.Bernhard T Baune, Carsten Konrad, Dominik Grotegerd, Thomas Suslow, Eva Birosova, Patricia Ohrmann, Jochen Bauer, Volker Arolt, Walter Heindel, Katharina Domschke, Sonja Schöning, Astrid V Rauch, Christina Uhlmann, Harald Kugel and Udo Dannlowsk

    Structure-guided selection of specificity determining positions in the human kinome

    Get PDF
    Background: The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results: We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion: We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important

    Transcription Factor SP4 Is a Susceptibility Gene for Bipolar Disorder

    Get PDF
    The Sp4 transcription factor plays a critical role for both development and function of mouse hippocampus. Reduced expression of the mouse Sp4 gene results in a variety of behavioral abnormalities relevant to human psychiatric disorders. The human SP4 gene is therefore examined for its association with both bipolar disorder and schizophrenia in European Caucasian and Chinese populations respectively. Out of ten SNPs selected from human SP4 genomic locus, four displayed significant association with bipolar disorder in European Caucasian families (rs12668354, p = 0.022; rs12673091, p = 0.0005; rs3735440, p = 0.019; rs11974306, p = 0.018). To replicate the genetic association, the same set of SNPs was examined in a Chinese bipolar case control sample. Four SNPs displayed significant association (rs40245, p = 0.009; rs12673091, p = 0.002; rs1018954, p = 0.001; rs3735440, p = 0.029), and two of them (rs12673091, rs3735440) were shared with positive SNPs from European Caucasian families. Considering the genetic overlap between bipolar disorder and schizophrenia, we extended our studies in Chinese trios families for schizophrenia. The SNP7 (rs12673091, p = 0.012) also displayed a significant association. The SNP7 (rs12673091) was therefore significantly associated in all three samples, and shared the same susceptibility allele (A) across all three samples. On the other hand, we found a gene dosage effect for mouse Sp4 gene in the modulation of sensorimotor gating, a putative endophenotype for both schizophrenia and bipolar disorder. The deficient sensorimotor gating in Sp4 hypomorphic mice was partially reversed by the administration of dopamine D2 antagonist or mood stabilizers. Both human genetic and mouse pharmacogenetic studies support Sp4 gene as a susceptibility gene for bipolar disorder or schizophrenia. The studies on the role of Sp4 gene in hippocampal development may provide novel insights for the contribution of hippocampal abnormalities in these psychiatric disorders

    Queering identity : becoming queer in the work of Cassils

    Get PDF
    This chapter explores the work of genderqueer artist Cassils in order to address the question of what it is to be human from a queer perspective. The challenges from queer and postmodern scholarship to the “identity politics” so central to earlier activist and academic agendas have been well documented. Yet, notwithstanding these valid critiques, identity remains a powerful organizing concept in contemporary experience. These contradictory stances on identity serve as a prompt for thinking about what queer brings to our understandings of being human now and in the near future
    corecore