20 research outputs found

    Transiting exoplanets from the CoRoT space mission VIII. CoRoT-7b: the first Super-Earth with measured radius

    Get PDF
    We report the discovery of very shallow (DF/F = 3.4 10-4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as due to the presence of a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We use CoRoT color information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy and preliminary results from Radial Velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star are derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. We examine carefully all conceivable cases of false positives, and all tests performed support the planetary hypothesis. Blends with separation larger than 0.40 arcsec or triple systems are almost excluded with a 8 10-4 risk left. We conclude that, as far as we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 10-5 day and a radius of Rp = 1.68 +/- 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. CoRoT-7b is very likely the first Super-Earth with a measured radius.Comment: Accepted in Astronomy and Astrophysics; typos and language corrections; version sent to the printer w few upgrade

    Activated Platelets in Carotid Artery Thrombosis in Mice Can Be Selectively Targeted with a Radiolabeled Single-Chain Antibody

    Get PDF
    BACKGROUND: Activated platelets can be found on the surface of inflamed, rupture-prone and ruptured plaques as well as in intravascular thrombosis. They are key players in thrombosis and atherosclerosis. In this study we describe the construction of a radiolabeled single-chain antibody targeting the LIBS-epitope of activated platelets to selectively depict platelet activation and wall-adherent non-occlusive thrombosis in a mouse model with nuclear imaging using in vitro and ex vivo autoradiography as well as small animal SPECT-CT for in vivo analysis. METHODOLOGY/PRINCIPAL FINDINGS: LIBS as well as an unspecific control single-chain antibody were labeled with (111)Indium ((111)In) via bifunctional DTPA ( = (111)In-LIBS/(111)In-control). Autoradiography after incubation with (111)In-LIBS on activated platelets in vitro (mean 3866 ± 28 DLU/mm(2), 4010 ± 630 DLU/mm(2) and 4520 ± 293 DLU/mm(2)) produced a significantly higher ligand uptake compared to (111)In-control (2101 ± 76 DLU/mm(2), 1181 ± 96 DLU/mm(2) and 1866 ± 246 DLU/mm(2)) indicating a specific binding to activated platelets; P<0.05. Applying these findings to an ex vivo mouse model of carotid artery thrombosis revealed a significant increase in ligand uptake after injection of (111)In-LIBS in the presence of small thrombi compared to the non-injured side, as confirmed by histology (49630 ± 10650 DLU/mm(2) vs. 17390 ± 7470 DLU/mm(2); P<0.05). These findings could also be reproduced in vivo. SPECT-CT analysis of the injured carotid artery with (111)In-LIBS resulted in a significant increase of the target-to-background ratio compared to (111)In-control (1.99 ± 0.36 vs. 1.1 ± 0.24; P < 0.01). CONCLUSIONS/SIGNIFICANCE: Nuclear imaging with (111)In-LIBS allows the detection of platelet activation in vitro and ex vivo with high sensitivity. Using SPECT-CT, wall-adherent activated platelets in carotid arteries could be depicted in vivo. These results encourage further studies elucidating the role of activated platelets in plaque pathology and atherosclerosis and might be of interest for further developments towards clinical application

    Transiting exoplanets from the CoRoT space mission. VIII. CoRoT-7b: the first super-Earth with measured radius

    Get PDF
    Copyright © The European Southern Observatory (ESO)Aims. We report the discovery of very shallow (ΔF/F ≈ 3.4×10−4), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40'' or triple systems are almost excluded with a 8 × 10−4 risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 ± 3 × 10−5 day and a radius of Rp = 1.68 ± 0.09 REarth. Analysis of preliminary radial velocity data yields an upper limit of 21 MEarth for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, ≈1800–2600 K at the substellar point, and a very low one, ≈50 K, on its dark face assuming no atmosphere, have been derived

    Ordonnancement des cuves de décroissance dans un service de médecine nucléaire

    No full text
    En France, les effluents gĂ©nĂ©rĂ©s par des personnes traitĂ©es et hospitalisĂ©es en mĂ©decine nuclĂ©aire doivent ĂȘtre collectĂ©s dans des cuves de dĂ©croissance avant leur rejet dans le rĂ©seau d’assainissement, en accord avec les limites rĂšglementaires dĂ©finies. Un modĂšle utilisant une sĂ©rie d’exponentielle dĂ©croissante a Ă©tĂ© mis au point permettant de simuler l’évolution de l’activitĂ© volumique dans les cuves de dĂ©croissance. Ainsi son utilisation permet d’optimiser le nombre et la capacitĂ© des cuves par rapport Ă  l’activitĂ© mĂ©dicale actuelle ou future. En outre, ce modĂšle est trĂšs modulable puisqu’il intĂšgre comme variables : la pĂ©riode physique du radioĂ©lĂ©ment, le volume total de chaque cuve, l’activitĂ© excrĂ©tĂ©e par patient, le volume total d’effluents gĂ©nĂ©rĂ©s par patient durant son sĂ©jour en chambre blindĂ©e, le nombre de patients pris en charge lors de chaque semaine et le nombre de semaines avant la mise en dĂ©croissance de la cuve. Par ailleurs, les simulations avec ce modĂšle montrent qu’à activitĂ© mĂ©dicale Ă©quivalente, il est possible de travailler soit avec 2 grandes cuves soit avec 3 cuves ayant une capacitĂ© rĂ©duite de 50 %. L’utilisation de plusieurs petites cuves permet en outre de maintenir la rotation des cuves de dĂ©croissance en cas de mise hors service d’une d’entre elles

    Philae - Science Scheduling and unknown context: Lessons learned

    Get PDF
    Rosetta is an ambitious mission launched in March 2004 to study the nucleus as well as the coma of the comet 67P/Churyumov-Gerasimenko. It is composed of a space probe and the Philae Lander. The mission is a series of premieres: among others, first probe to escort a comet, first time a landing site is selected with a so short notice, first time a lander has landed on a comet nucleus. The space probe Rosetta reached the vicinity of the comet in spring 2014 when it has started to study Churyumov-Gerasimenko with remote sensing instruments. An intense observation phase followed to be able to select a landing site for the Lander. And in November 2014, at a distance of about 3 AU from the sun, Philae has reached its destination on the surface of the comet 67P. Once stabilized on the comet, the lander has performed its “First Science Sequence”. Philae’s aim was to perform detailed and innovative in-situ experiments on the comet’s surface to characterize the nucleus by performing mechanical, chemical and physical investigations on the comet surface. The main contribution to the Rosetta lander by the French space agency (CNES) is the Science Operation and Navigation Centre (SONC) located in Toulouse. Among its tasks is the scheduling of the scientific activities of the 10 lander experiments and then to provide it to the Lander Control Centre (LCC) located in DLR Cologne. Nevertheless, the specific context of the Rosetta mission made this task even more complex if compared to usual spacecraft or landers: indeed the teams in charge of the Philae activity scheduling had to cope with huge constraints in term of energy, data management, asynchronous processes and co-activities or exclusions between instruments. In addition to these huge constraints it is important to note that the comet, its environment and the landing conditions remained unknown until the separation time and that the landing site was selected a short time before it had to take place and when the baseline operational sequence was already designed. This paper will explain the specific context of the Rosetta lander mission and all the constraints that the activity scheduling had to face to fulfil the scientific objectives specified for Philae. A specific tool was developed by CNES and used to design the complete sequence of activities on the comet with respect to all constraints. The baseline scenario designed this way will also be detailed to highlight the difficulties and challenges that the operational team had to face. A specific focus will be given on the landing site selection and the impacts on the scientific operations scheduling. Moreover the actual sequence performed on the comet will also be detailed and analysed to deduce the lessons that could be learned from such an unprecedented endeavour. Indeed as for every mission of exploration the flexibility concept was anticipated but had to face unexpected events

    Xenograft biologic mesh in parietal and general surgery : technical assessment and review of clinical effectiveness and safety data

    No full text
    Study aim: To describe the main technical characteristics of biologic prostheses used for parietal reinforcement and to present the state of the art on their risk/benefit ratio. Methods: We conducted a technical analysis of manufacturer specifications of the biologic prostheses that are currently available in France accompanied by a literature review by selecting meta-analyses and systematic reviews, randomized controlled trials and publications of health technology rating agencies. Results: Biological implants for parietal reinforcement are mainly intended for use in a contaminated environment where the use of synthetic prostheses is contra-indicated. We identified fourteen systematic reviews and meta-analyses and one randomized controlled trial. Six ongoing clinical trials were identified as well as two clinical trials that had been interrupted. In the current state of knowledge, there are no high-level evidence data on the therapeutic contribution of biologic prostheses that allow prioritization of the various biologic prostheses according to their characteristics or their different manufacturing processes. Conclusion: Pending the results of current randomized controlled trials to validate the indications and an eventual specific reimbursement, indications for the use of biologic parietal reinforcement prostheses seems to be limited to rare clinical situations and only after collegial discussion
    corecore