4,950 research outputs found

    A Closed Contour of Integration in Regge Calculus

    Get PDF
    The analytic structure of the Regge action on a cone in dd dimensions over a boundary of arbitrary topology is determined in simplicial minisuperspace. The minisuperspace is defined by the assignment of a single internal edge length to all 1-simplices emanating from the cone vertex, and a single boundary edge length to all 1-simplices lying on the boundary. The Regge action is analyzed in the space of complex edge lengths, and it is shown that there are three finite branch points in this complex plane. A closed contour of integration encircling the branch points is shown to yield a convergent real wave function. This closed contour can be deformed to a steepest descent contour for all sizes of the bounding universe. In general, the contour yields an oscillating wave function for universes of size greater than a critical value which depends on the topology of the bounding universe. For values less than the critical value the wave function exhibits exponential behaviour. It is shown that the critical value is positive for spherical topology in arbitrary dimensions. In three dimensions we compute the critical value for a boundary universe of arbitrary genus, while in four and five dimensions we study examples of product manifolds and connected sums.Comment: 16 pages, Latex, To appear in Gen. Rel. Gra

    Approximate Decoherence of Histories and 't Hooft's Deterministic Quantum Theory

    Get PDF
    This paper explores the possibility that an exactly decoherent set of histories may be constructed from an approximately decoherent set by small distortions of the operators characterizing the histories. In particular, for the case of histories of positions and momenta, this is achieved by doubling the set of operators and then finding, amongst this enlarged set, new position and momentum operators which commute, so decohere exactly, and which are ``close'' to the original operators. The enlarged, exactly decoherent, theory has the same classical dynamics as the original one, and coincides with the so-called deterministic quantum theories of the type recently studied by 't Hooft. These results suggest that the comparison of standard and deterministic quantum theories may provide an alternative method of characterizing emergent classicality. A side-product is the surprising result that histories of momenta in the quantum Brownian motion model (for the free particle in the high-temperature limit) are exactly decoherent.Comment: 41 pages, plain Te

    Complex lapse, complex action and path integrals

    Get PDF
    Imaginary time is often used in quantum tunnelling calculations. This article advocates a conceptually sounder alternative: complex lapse. In the ``3+1'' action for the Einstein gravitational field minimally coupled to a Klein-Gordon field, allowing the lapse function to be complex yields a complex action which generates both the usual Lorentzian theory and its Riemannian analogue, and in particular allows a change of signature between the two. The action and variational equations are manifestly well defined in the Hamiltonian representation, with the momentum fields consequently being complex. The complex action interpolates between the Lorentzian and Riemannian actions as they appear formally in the respective path integrals. Thus the complex-lapse theory provides a unified basis for a path-integral quantum theory of gravity involving both Lorentzian and Riemannian aspects. A major motivation is the quantum-tunnelling scenario for the origin of the universe. Taken as an explanation for the observed quantum tunnelling of particles, the complex-lapse theory determines that the argument of the lapse for the universe now is extremely small but negative.Comment: 12 pages, Te

    Quantum cosmology with a curvature squared action

    Get PDF
    The correct quantum description for a curvature squared term in the action can be obtained by casting the action in the canonical form with the introduction of a variable which is the negative of the first derivative of the field variable appearing in the action, only after removing the total derivative terms from the action. We present the Wheeler-DeWitt equation and obtain the expression for the probability density and current density from the equation of continuity. Furthermore, in the weak energy limit we obtain the classical Einstein equation. Finally we present a solution of the wave equation.Comment: 8 pages, revte

    The exact cosmological solution to the dynamical equations for the Bianchi IX model

    Get PDF
    Quantum geometrodynamics in extended phase space describes phenomenologically the integrated system ``a physical object + observation means (a gravitational vacuum condensate)''. The central place in this version of QGD belongs to the Schrodinger equation for a wave function of the Universe. An exact solution to the ``conditionally-classical'' set of equations in extended phase space for the Bianchi-IX model and the appropriate solution to the Schrodinger equation are considered. The physical adequacy of the obtained solutions to existing concepts about possible cosmological scenarios is demonstrated. The gravitational vacuum condensate is shown to be a cosmological evolution factor.Comment: LaTeX, 14 pages, to be published in Int. J. Mod. Phys.

    Global phase time and path integral for string cosmological models

    Get PDF
    A global phase time is identified for homogeneous and isotropic cosmological models yielding from the low energy effective action of closed bosonic string theory. When the Hamiltonian constraint allows for the existence of an intrinsic time, the quantum transition amplitude is obtained by means of the usual path integral procedure for gauge systems.Comment: 12 pages, added reference

    On the interpretation of time-reparametrization-invariant quantum mechanics

    Get PDF
    The classical and quantum dynamics of simple time-reparametrization- invariant models containing two degrees of freedom are studied in detail. Elimination of one ``clock'' variable through the Hamiltonian constraint leads to a description of time evolution for the remaining variable which is essentially equivalent to the standard quantum mechanics of an unconstrained system. In contrast to a similar proposal of Rovelli, evolution is with respect to the geometrical proper time, and the Heisenberg equation of motion is exact. The possibility of a ``test clock'', which would reveal time evolution while contributing negligibly to the Hamiltonian constraint is examined, and found to be viable in the semiclassical limit of large quantum numbers.Comment: 13 pages, set in REVTeX. One figure available by FAX from [email protected]

    Consistent Histories in Quantum Cosmology

    Get PDF
    We illustrate the crucial role played by decoherence (consistency of quantum histories) in extracting consistent quantum probabilities for alternative histories in quantum cosmology. Specifically, within a Wheeler-DeWitt quantization of a flat Friedmann-Robertson-Walker cosmological model sourced with a free massless scalar field, we calculate the probability that the univese is singular in the sense that it assumes zero volume. Classical solutions of this model are a disjoint set of expanding and contracting singular branches. A naive assessment of the behavior of quantum states which are superpositions of expanding and contracting universes may suggest that a "quantum bounce" is possible i.e. that the wave function of the universe may remain peaked on a non-singular classical solution throughout its history. However, a more careful consistent histories analysis shows that for arbitrary states in the physical Hilbert space the probability of this Wheeler-DeWitt quantum universe encountering the big bang/crunch singularity is equal to unity. A quantum Wheeler-DeWitt universe is inevitably singular, and a "quantum bounce" is thus not possible in these models.Comment: To appear in Foundations of Physics special issue on quantum foundation

    Chern-Simons functional and the no-boundary proposal in Bianchi IX quantum cosmology

    Get PDF
    The Chern-Simons functional SCSS_{\rm CS} is an exact solution to the Ashtekar-Hamilton-Jacobi equation of general relativity with a nonzero cosmological constant. In this paper we consider SCSS_{\rm CS} in Bianchi type IX cosmology with S3S^3 spatial surfaces. We show that among the classical solutions generated by~SCSS_{\rm CS}, there is a two-parameter family of Euclidean spacetimes that have a regular NUT-type closing. When two of the three scale factors are equal, these spacetimes reduce to a one-parameter family within the Euclidean Taub-NUT-de~Sitter metrics. For a nonzero cosmological constant, exp⁥(iSCS)\exp(iS_{\rm CS}) therefore provides a semiclassical estimate to the Bianchi~IX no-boundary wave function in Ashtekar's variables.Comment: 9 pages, REVTeX v3.0. (One reference added.
    • 

    corecore