17 research outputs found

    PGC-1α promotes exercise-induced autophagy in mouse skeletal muscle

    Get PDF
    Recent evidence suggests that exercise stimulates the degradation of cellular components in skeletal muscle through activation of autophagy, but the time course of the autophagy response during recovery from exercise has not been determined. Furthermore, the regulatory mechanisms behind exercise‐induced autophagy remain unclear, although the muscle oxidative phenotype has been linked with basal autophagy levels. Therefore, the aim of this study was to investigate the role of the key regulator of muscle oxidative capacity, PGC‐1α, in exercise‐induced autophagy at several time points during recovery. Mice with transgenic muscle‐specific overexpression (TG) or knockout (MKO) of PGC‐1α and their respective littermate controls were subjected to a single 1 h bout of treadmill running and euthanized immediately (0 h), 2, 6, and 10 h after exercise. In the PGC‐1α MKO strain, quadriceps protein content of the autophagy marker LC3II was increased from 2 h into recovery in lox/lox control, but not in MKO mice. In the PGC‐1α TG strain, quadriceps protein content of LC3II was increased from 2 h after exercise in TG, but not in WT. Although AMPK and ACC phosphorylation was increased immediately following exercise, the observed exercise‐induced autophagy response was not associated with phosphorylation of the AMPK‐target ULK1. However, lower protein carbonyl content was observed in lox/lox and TG mice after exercise coinciding with the increased LC3 lipidation. In conclusion, the present results suggest a role of skeletal muscle PGC‐1α in coordinating several exercise‐induced adaptive responses including autophagic removal of damaged cellular components

    Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle

    Get PDF
    Abstract Lifelong regular physical activity is associated with reduced risk of type 2 diabetes (T2D), maintenance of muscle mass and increased metabolic capacity. However, little is known about epigenetic mechanisms that might contribute to these beneficial effects in aged individuals. We investigated the effect of lifelong physical activity on global DNA methylation patterns in skeletal muscle of healthy aged men, who had either performed regular exercise or remained sedentary their entire lives (average age 62 years). DNA methylation was significantly lower in 714 promoters of the physically active than inactive men while methylation of introns, exons and CpG islands was similar in the two groups. Promoters for genes encoding critical insulin-responsive enzymes in glycogen metabolism, glycolysis and TCA cycle were hypomethylated in active relative to inactive men. Hypomethylation was also found in promoters of myosin light chain, dystrophin, actin polymerization, PAK regulatory genes and oxidative stress response genes. A cluster of genes regulated by GSK3β-TCF7L2 also displayed promoter hypomethylation. Together, our results suggest that lifelong physical activity is associated with DNA methylation patterns that potentially allow for increased insulin sensitivity and a higher expression of genes in energy metabolism, myogenesis, contractile properties and oxidative stress resistance in skeletal muscle of aged individuals

    Oxygen conserving mitochondrial adaptations in the skeletal muscles of breath hold divers

    Get PDF
    BackgroundThe performance of elite breath hold divers (BHD) includes static breath hold for more than 11 minutes, swimming as far as 300 m, or going below 250 m in depth, all on a single breath of air. Diving mammals are adapted to sustain oxidative metabolism in hypoxic conditions through several metabolic adaptations, including improved capacity for oxygen transport and mitochondrial oxidative phosphorylation in skeletal muscle. It was hypothesized that similar adaptations characterized human BHD. Hence, the purpose of this study was to examine the capacity for oxidative metabolism in skeletal muscle of BHD compared to matched controls.MethodsBiopsies were obtained from the lateral vastus of the femoral muscle from 8 Danish BHD and 8 non-diving controls (Judo athletes) matched for morphometry and whole body VO2max. High resolution respirometry was used to determine mitochondrial respiratory capacity and leak respiration with simultaneous measurement of mitochondrial H2O2 emission. Maximal citrate synthase (CS) and 3-hydroxyacyl CoA dehydrogenase (HAD) activity were measured in muscle tissue homogenates. Western Blotting was used to determine protein contents of respiratory complex I-V subunits and myoglobin in muscle tissue lysates.ResultsMuscle biopsies of BHD revealed lower mitochondrial leak respiration and electron transfer system (ETS) capacity and higher H2O2 emission during leak respiration than controls, with no differences in enzyme activities (CS and HAD) or protein content of mitochondrial complex subunits myoglobin, myosin heavy chain isoforms, markers of glucose metabolism and antioxidant enzymes.ConclusionWe demonstrated for the first time in humans, that the skeletal muscles of BHD are characterized by lower mitochondrial oxygen consumption both during low leak and high (ETS) respiration than matched controls. This supports previous observations of diving mammals demonstrating a lower aerobic mitochondrial capacity of the skeletal muscles as an oxygen conserving adaptation during prolonged dives.</div

    Circular DNA elements of chromosomal origin are common in healthy human somatic tissue

    Get PDF
    Somatic cells can accumulate structural variations such as deletions. Here, Møller et al. show that normal human cells generate large extrachromosomal circular DNAs (eccDNAs), most likely the products of excised DNA, that can be transcriptionally active and, thus, may have phenotypic consequences

    Inducible deletion of skeletal muscle AMPKα 1 reveals that AMPK is required for nucleotide balance but dispensable for muscle glucose uptake and fat oxidation during exercise

    Get PDF
    International audienceObjective: Current evidence for AMPK-mediated regulation of skeletal muscle metabolism during exercise is mainly based on transgenic mouse models with chronic (lifelong) disruption of AMPK function. Findings based on such models are potentially biased by secondary effects related to chronic lack of AMPK function. In an attempt to study the direct effect(s) of AMPK on muscle metabolism during exercise, we generated a new mouse model with inducible muscle-specific deletion of AMPKα catalytic subunits in adult mice.Methods: Tamoxifen-inducible and muscle-specific AMPKα1/α2 double KO mice (AMPKα imdKO) were generated using the Cre/loxP system with the Cre driven by the human skeletal muscle actin (HSA) promotor.Results: During treadmill running at the same relative exercise intensity, AMPKα imdKO mice showed greater depletion of muscle ATP, which was associated with accumulation of the deamination product IMP. Muscle-specific deletion of AMPKα in adult mice promptly reduced maximal running speed, muscle glycogen content and was associated with reduced expression of UGP2, a key component of the glycogen synthesis pathway. Muscle mitochondrial respiration, whole body substrate utilization as well as muscle glucose uptake and fatty acid (FA) oxidation during muscle contractile activity remained unaffected by muscle-specific deletion AMPKα subunits in adult mice.Conclusions: Inducible deletion of AMPKα subunits in adult mice reveals that AMPK is required for maintaining muscle ATP levels and nucleotide balance during exercise, but is dispensable for regulating muscle glucose uptake, FA oxidation and substrate utilization during exercise

    Why PGC-1α matters:Regulation of skeletal muscle mitochondrial function beyond biogenesis

    No full text

    PGC-1α-mediated regulation of mitochondrial function and physiological implications

    No full text
    The majority of human energy metabolism occurs in skeletal muscle mitochondria emphasizing the importance of understanding the regulation of myocellular mitochondrial function. The transcriptional co-activator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) has been characterized as a major factor in the transcriptional control of several mitochondrial components. Thus, PGC-1α is often described as a master regulator of mitochondrial biogenesis as well as a central player in regulating the antioxidant defense. However, accumulating evidence suggests that PGC-1α is also involved in the complex regulation of mitochondrial quality beyond biogenesis, which includes mitochondrial network dynamics and autophagic removal of damaged mitochondria. In addition, mitochondrial reactive oxygen species production has been suggested to regulate skeletal muscle insulin sensitivity, which may also be influenced by PGC-1α. This review aims to highlight the current evidence for PGC-1α-mediated regulation of skeletal muscle mitochondrial function beyond the effects on mitochondrial biogenesis as well as the potential PGC-1α-related impact on insulin-stimulated glucose uptake in skeletal muscle. Novelty PGC-1α regulates mitochondrial biogenesis but also has effects on mitochondrial functions beyond biogenesis. Mitochondrial quality control mechanisms, including fission, fusion, and mitophagy, are regulated by PGC-1α. PGC-1α-mediated regulation of mitochondrial quality may affect age-related mitochondrial dysfunction and insulin sensitivity.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore