3,066 research outputs found

    Fluoridated elastomers: Effect on the microbiology of plaque

    Get PDF
    The objective of this study was to investigate the effect of fluoridated elastomeric ligatures on the microbiology of local dental plaque in vivo. This randomized, prospective, longitudinal, clinical trial had a split-mouth crossover design. The subjects were 30 patients at the beginning of their treatment with fixed orthodontic appliances in the orthodontic departments of the Liverpool and the Sheffield dental hospitals in the United Kingdom. The study consisted of 2 experimental periods of 6 weeks with a washout period between. Fluoridated elastomers were randomly allocated at the first visit to be placed around brackets on tooth numbers 12, 11, 33 or 22, 21, 43. Nonfluoridated elastomers were placed on the contralateral teeth. Standard nonantibacterial fluoridated toothpaste and mouthwash were supplied. After 6 weeks (visit 2), the elastomers were removed, placed in transport media, and plated on agar within 2 hours. Nonfluoridated elastomers were placed on all brackets for 1 visit to allow for a washout period. At visit 3, fluoridated elastomers were placed on the teeth contralateral to those that received them at visit 1. At visit 4, the procedures at visit 2 were repeated. Samples were collected on visits 2 and 4. A logistic regression was performed, with the presence or absence of streptococcal or anaerobic growth as the dependent variable. A mixed-effects analysis of variance was carried out with the percentage of streptococcal or anaerobic bacterial count as the dependent variable. The only significant independent variables were the subject variable (P = < .001) for the percentage of streptococcal and anaerobic bacterial count and the visit variable for the percentage of streptococcal count (P = < .001). The use of fluoridated or nonfluoridated elastomers was not significant for percentage of either streptococcal (P = .288) or anaerobic count (P = .230). Fluoridated elastomers are not effective at reducing local streptococcal or anaerobic bacterial growth after a clinically relevant time in the mouth

    Impact of retarded spark timing on engine combustion, hydrocarbon emissions, and fast catalyst light-off

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2005.Page 174 blank.Includes bibliographical references (p. 125-126).An experimental study was performed to determine the effects of substantial spark retard on engine combustion, hydrocarbon (HC) emissions, feed gas enthalpy, and catalyst light-off. Engine experiments were conducted at cold engine conditions for various ignition timings and air/ fuel ratios. Chemical and thermal energy of the exhaust gas was tracked from cylinder-exit to the catalytic converter inlet using a variety of experimental techniques. Time-resolved exhaust port and exhaust runner hydrocarbon concentrations were converted to an exhaust HC mass flow rate and compared to time-averaged downstream HC levels. Quenching experiments quantified cylinder-exit HC emissions by rapidly cooling exhaust gas at the valve seats, effectively freezing HC oxidation reactions. Combustion stability was observed to decrease as the phasing of the 50% mass fraction burned location occurred later in the expansion stroke. A thermodynamic burn rate analysis indicated combustion was complete by exhaust valve opening with spark timings as late as 200 after top-dead-center (ATDC). Engine operation with a relative air/fuel ratio 10% lean of stoichiometric resulted in the lowest observed tailpipe-out HC emissions. Retarded spark timings increased exhaust system oxidation, with port HC oxidation ranging from 15% to 37% with additional HC reductions (40-50%) in the runner for ATDC spark timings. Catalyst light-off times were reduced by 5 seconds and cumulative catalytic converter-in HC emissions were reduced by 44% prior to light-off. A phenomenological model of exhaust system oxidation was developed to provide insight into HC burn-up with late combustion phasing.(cont.) A detailed chemical kinetic mechanism was coupled with an exhaust flow model and exhaust thermal model. The hydrocarbon tracking and exhaust gas quenching experiments provided initial conditions for a reacting plug flow model. The predicted exhaust HC reaction rates were found to be strongly coupled with exhaust gas temperature and the hydrocarbon species used to represent unburned fuel. The analysis showed that most of the oxidation occurred early in the exhaust period when gas temperatures exceeded 1300K.by Brian E. Hallgren.Ph.D

    Association between Diagnosed Anxiety and Depression and Exposure to Life Stressors during the COVID-19 Pandemic

    Full text link
    Research suggests that mental health disorders heighten the risk of exposure to life stressors. Drawing on a sample of 754 adults from a survey distributed at six primary care clinics, we examine whether adults who reported ever being diagnosed with depression or anxiety were more likely to experience an employment disruption, a housing disruption, and/or report more COVID-19-related stressors during the COVID-19 pandemic. Individuals who reported ever being diagnosed with depression reported a greater burden (B=.75) of COVID-19-related stressors. Those who reported ever being diagnosed with anxiety had higher odds of experiencing an employment disruption (OR=1.90) and a housing disruption (OR=2.92) and reported about one (B=.97) additional COVID-19-related stressor. Our results suggest that the COVID-19 pandemic may have deepened existing mental health disparities by exposing those with a depression or anxiety diagnosis to additional life stressors

    Random Oracles in a Quantum World

    Get PDF
    The interest in post-quantum cryptography - classical systems that remain secure in the presence of a quantum adversary - has generated elegant proposals for new cryptosystems. Some of these systems are set in the random oracle model and are proven secure relative to adversaries that have classical access to the random oracle. We argue that to prove post-quantum security one needs to prove security in the quantum-accessible random oracle model where the adversary can query the random oracle with quantum states. We begin by separating the classical and quantum-accessible random oracle models by presenting a scheme that is secure when the adversary is given classical access to the random oracle, but is insecure when the adversary can make quantum oracle queries. We then set out to develop generic conditions under which a classical random oracle proof implies security in the quantum-accessible random oracle model. We introduce the concept of a history-free reduction which is a category of classical random oracle reductions that basically determine oracle answers independently of the history of previous queries, and we prove that such reductions imply security in the quantum model. We then show that certain post-quantum proposals, including ones based on lattices, can be proven secure using history-free reductions and are therefore post-quantum secure. We conclude with a rich set of open problems in this area.Comment: 38 pages, v2: many substantial changes and extensions, merged with a related paper by Boneh and Zhandr

    Optical Properties of Deep Ice at the South Pole - Absorption

    Get PDF
    We discuss recent measurements of the wavelength-dependent absorption coefficients in deep South Pole ice. The method uses transit time distributions of pulses from a variable-frequency laser sent between emitters and receivers embedded in the ice. At depths of 800 to 1000 m scattering is dominated by residual air bubbles, whereas absorption occurs both in ice itself and in insoluble impurities. The absorption coefficient increases approximately exponentially with wavelength in the measured interval 410 to 610 nm. At the shortest wavelength our value is about a factor 20 below previous values obtained for laboratory ice and lake ice; with increasing wavelength the discrepancy with previous measurements decreases. At around 415 to 500 nm the experimental uncertainties are small enough for us to resolve an extrinsic contribution to absorption in ice: submicron dust particles contribute by an amount that increases with depth and corresponds well with the expected increase seen near the Last Glacial Maximum in Vostok and Dome C ice cores. The laser pulse method allows remote mapping of gross structure in dust concentration as a function of depth in glacial ice.Comment: 26 pages, LaTex, Accepted for publication in Applied Optics. 9 figures, not included, available on request from [email protected]

    Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice

    Get PDF
    KMT5B gene; Neurodevelopment; MiceGen KMT5B; Neurodesenvolupament; RatolinsGen KMT5B; Neurodesarrollo; RatonesPathogenic variants in KMT5B, a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM# 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest (n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B-related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.This work was supported by LB692 Nebraska Tobacco Settlement Biomedical Research Development Program (to H.A.F.S.); The Simons Foundation Autism Research Initiative–Bridge to Independence Award SFARI 381192 (to H.A.F.S.); The A*STAR, Singapore, IAF-PP Program H17/01/a0/004 (to C.Y.L.); The Wong Boon Hock Society research program Yong Loo Lin School of Medicine (to Z.X.C.); NIH training grant 2T32GM008638-25 (L.B.); The Intramural Research Program of the National Human Genome Research Institute (to W.G.); The National Center for Advancing Translational Sciences of the NIH award number TL1TR001880 (to S.E.S.); The Eunice Kennedy Shriver National Institute of Child Health and Human Development award number HD009003-01 (to S.E.S.); Institute for Translational Medicine and Therapeutics of the Perelman School of Medicine at the University of Pennsylvania (to S.E.S.); and Swiss National Science Foundation (SNSF) grant 320020_179547 and funds from the University of Zurich Research Priority Programs (URPP) AdaBD: Adaptive Brain Circuits in Developments (to A.Rau.). F.J.K. was funded by the Deutsche Forschungsgemeinschaft grant number FOR 2488. In silico modeling was supported by the Spanish Ministerio de Ciencia e Innovación grant number PID2019-111217RB-I00 (to X.d.l.C.). This study used data from the DDD study. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003). This study makes use of DECIPHER (www.deciphergenomics.org), which is funded by Wellcome (grant number 223718/Z/21/Z). See Nature PMID: 25533962 or www.ddduk.org/access.html for full acknowledgement

    A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array

    Full text link
    The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the 10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by charged particle showers generated by neutrino interactions in the ice. The ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the full array. During the 2013-14 austral summer, three HRA stations collected radio data which was wirelessly transmitted off site in nearly real-time. The performance of these stations is described and a simple analysis to search for neutrino signals is presented. The analysis employs a set of three cuts that reject background triggers while preserving 90% of simulated cosmogenic neutrino triggers. No neutrino candidates are found in the data and a model-independent 90% confidence level Neyman upper limit is placed on the all flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 - 10^9.5 GeV energy bin. Simulations of the performance of the full detector are also described. The sensitivity of the full ARIANNA experiment is presented and compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic
    • …
    corecore