12,098 research outputs found
Quantum Gauge Equivalence in QED
We discuss gauge transformations in QED coupled to a charged spinor field,
and examine whether we can gauge-transform the entire formulation of the theory
from one gauge to another, so that not only the gauge and spinor fields, but
also the forms of the operator-valued Hamiltonians are transformed. The
discussion includes the covariant gauge, in which the gauge condition and
Gauss's law are not primary constraints on operator-valued quantities; it also
includes the Coulomb gauge, and the spatial axial gauge, in which the
constraints are imposed on operator-valued fields by applying the
Dirac-Bergmann procedure. We show how to transform the covariant, Coulomb and
spatial axial gauges to what we call
``common form,'' in which all particle excitation modes have identical
properties. We also show that, once that common form has been reached, QED in
different gauges has a common time-evolution operator that defines
time-translation for states that represent systems of electrons and photons.
By combining gauge transformations with changes of representation from
standard to common form, the entire apparatus of a gauge theory can be
transformed from one gauge to another.Comment: Contribution for a special issue of Foundations of Physics honoring
Fritz Rohrlich; edited by Larry P. Horwitz, Tel-Aviv University, and Alwyn
van der Merwe, University of Denver (Plenum Publishing, New York); 40 pages,
REVTEX, Preprint UCONN-93-3, 1 figure available upon request from author
Precision Measurements of Stretching and Compression in Fluid Mixing
The mixing of an impurity into a flowing fluid is an important process in
many areas of science, including geophysical processes, chemical reactors, and
microfluidic devices. In some cases, for example periodic flows, the concepts
of nonlinear dynamics provide a deep theoretical basis for understanding
mixing. Unfortunately, the building blocks of this theory, i.e. the fixed
points and invariant manifolds of the associated Poincare map, have remained
inaccessible to direct experimental study, thus limiting the insight that could
be obtained. Using precision measurements of tracer particle trajectories in a
two-dimensional fluid flow producing chaotic mixing, we directly measure the
time-dependent stretching and compression fields. These quantities, previously
available only numerically, attain local maxima along lines coinciding with the
stable and unstable manifolds, thus revealing the dynamical structures that
control mixing. Contours or level sets of a passive impurity field are found to
be aligned parallel to the lines of large compression (unstable manifolds) at
each instant. This connection appears to persist as the onset of turbulence is
approached.Comment: 5 pages, 5 figure
Persistent Transport Barrier on the West Florida Shelf
Analysis of drifter trajectories in the Gulf of Mexico has revealed the
existence of a region on the southern portion of the West Florida Shelf (WFS)
that is not visited by drifters that are released outside of the region. This
so-called ``forbidden zone'' (FZ) suggests the existence of a persistent
cross-shelf transport barrier on the southern portion of the WFS. In this
letter a year-long record of surface currents produced by a Hybrid-Coordinate
Ocean Model simulation of the WFS is used to identify Lagrangian coherent
structures (LCSs), which reveal the presence of a robust and persistent
cross-shelf transport barrier in approximately the same location as the
boundary of the FZ. The location of the cross-shelf transport barrier undergoes
a seasonal oscillation, being closer to the coast in the summer than in the
winter. A month-long record of surface currents inferred from high-frequency
(HF) radar measurements in a roughly 60 km 80 km region on the WFS off
Tampa Bay is also used to identify LCSs, which reveal the presence of robust
transient transport barriers. While the HF-radar-derived transport barriers
cannot be unambiguously linked to the boundary of the FZ, this analysis does
demonstrate the feasibility of monitoring transport barriers on the WFS using a
HF-radar-based measurement system. The implications of a persistent cross-shelf
transport barrier on the WFS for the development of harmful algal blooms on the
shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter
Regrowth-related defect formation and evolution in 1 MeV amorphized (001) Ge
Geimplanted with 1MeV Si⁺ at a dose of 1×10¹⁵cm⁻² creates a buried amorphous layer that, upon regrowth, exhibits several forms of defects–end-of-range (EOR), regrowth-related, and clamshell defects. Unlike Si, no planar {311} defects are observed. The minimal EOR defects are small dotlike defects and are very unstable, dissolving between 450 and 550°C. This is in contrast to Si, where the EOR defects are very stable. The amorphous layer results in both regrowth-related defects and clamshell defects, which were more stable than the EOR damage.This work is supported by Semiconductor Research Corporation
Contract No. 00057787
Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows
When an integrable two-degrees-of-freedom Hamiltonian system possessing a
circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It
is proved that its occurrence is generic for one parameter families
(co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical
experiments indicate that the motion near a parabolic resonance exhibits new
type of chaotic behavior which includes instabilities in some directions and
long trapping times in others. Moreover, in a degenerate case, near a {\it flat
parabolic resonance}, large scale instabilities appear. A model arising from an
atmospherical study is shown to exhibit flat parabolic resonance. This supplies
a simple mechanism for the transport of particles with {\it small} (i.e.
atmospherically relevant) initial velocities from the vicinity of the equator
to high latitudes. A modification of the model which allows the development of
atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities
are clearly observed
Specifications and programs for computer software validation
Three software products developed during the study are reported and include: (1) FORTRAN Automatic Code Evaluation System, (2) the Specification Language System, and (3) the Array Index Validation System
A Systematic Review and Meta-Analysis Estimating the Expected Dropout Rates in Randomized Controlled Trials on Yoga Interventions
© 2016 Holger Cramer et al. A reasonable estimation of expected dropout rates is vital for adequate sample size calculations in randomized controlled trials (RCTs). Underestimating expected dropouts rates increases the risk of false negative results while overestimating rates results in overly large sample sizes, raising both ethical and economic issues. To estimate expected dropout rates in RCTs on yoga interventions, MEDLINE/PubMed, Scopus, IndMED, and the Cochrane Library were searched through February 2014; a total of 168 RCTs were meta-analyzed. Overall dropout rate was 11.42% (95% confidence interval [CI] = 10.11%, 12.73%) in the yoga groups; rates were comparable in usual care and psychological control groups and were slightly higher in exercise control groups (rate = 14.53%; 95% CI = 11.56%, 17.50%; odds ratio = 0.82; 95% CI = 0.68, 0.98; p = 0.03). For RCTs with durations above 12 weeks, dropout rates in yoga groups increased to 15.23% (95% CI = 11.79%, 18.68%). The upper border of 95% CIs for dropout rates commonly was below 20% regardless of study origin, health condition, gender, age groups, and intervention characteristics; however, it exceeded 40% for studies on HIV patients or heterogeneous age groups. In conclusion, dropout rates can be expected to be less than 15 to 20% for most RCTs on yoga interventions. Yet dropout rates beyond 40% are possible depending on the participants' sociodemographic and health condition
- …