129 research outputs found

    Detection and Characterization of Low Temperature Peat Fires during the 2015 Fire Catastrophe in Indonesia Using a New High-Sensitivity Fire Monitoring Satellite Sensor (FireBird)

    Get PDF
    Vast and disastrous fires occurred on Borneo during the 2015 dry season, pushing Indonesia into the top five carbon emitting countries. The region was affected by a very strong El Nino-Southern Oscillation (ENSO) climate phenomenon, on par with the last severe event in 1997/98. Fire dynamics in Central Kalimantan were investigated using an innovative sensor offering higher sensitivity to a wider range of fire intensities at a finer spatial resolution (160 m) than heretofore available. The sensor is onboard the TET-1 satellite, part of the German Aerospace Center (DLR) FireBird mission. TET-1 images (acquired every 2-3 days) from the middle infrared were used to detect fires continuously burning for almost three weeks in the protected peatlands of Sebangau National Park as well as surrounding areas with active logging and oil palm concessions. TET-1 detection capabilities were compared with MODIS active fire detection and Landsat burned area algorithms. Fire dynamics, including fire front propagation speed and area burned, were investigated. We show that TET-1 has improved detection capabilities over MODIS in monitoring low-intensity peatland fire fronts through thick smoke and haze. Analysis of fire dynamics revealed that the largest burned areas resulted from fire front lines started from multiple locations, and the highest propagation speeds were in excess of 500 m/day (all over peat > 2m deep). Fires were found to occur most often in concessions that contained drainage infrastructure but were not cleared prior to the fire season. Benefits of implementing this sensor system to improve current fire management techniques are discussed. Near real-time fire detection together with enhanced fire behavior monitoring capabilities would not only improve firefighting efforts, but also benefit analysis of fire impact on tropical peatlands, greenhouse gas emission estimations as well as mitigation measures to reduce severe fire events in the future

    Prediabetes conversion to Normoglycemia is superior adding a low-carbohydrate and energy deficit formula diet to lifestyle intervention - a 12-month subanalysis of the ACOORH trial

    Get PDF
    Lifestyle interventions have been shown to reverse hyperglycemia to normoglycemia. However, these effects are not long-lasting and are accompanied with high dropout rates. As formula diets have been shown to be simple in usage and effective in improving glycemic control, we hypothesised that adding a low-carbohydrate and energy deficit formula diet to a low-intensity lifestyle intervention is superior in reversing prediabetes compared with lifestyle intervention alone. In this predefined subanalysis of an international, multicenter randomised controlled trial (Almased Concept against Overweight and Obesity and Related Health Risk (ACOORH) study (ID DRKS00006811)), 141 persons with prediabetes were randomised (1:2) into either a control group with lifestyle intervention only (CON, n = 45) or a lifestyle intervention group accompanied with a formula diet (INT, n = 96). Both groups were equipped with telemonitoring devices. INT received a low-carbohydrate formula diet substituting three meals/day (~1200 kcal/day) within the first week, two meals/day during week 2–4, and one meal/day during week 5–26 (1300–1500 kcal/day). Follow-up was performed after 52 weeks and 105 participants (75%, INT: n = 74; CON: n = 31) finished the 26-week intervention phase. Follow-up data after 52 weeks were available from 93 participants (66%, INT: n = 65; CON: n = 28). Compared with CON, significantly more INT participants converted to normoglycemia after 52 weeks (50% vs. 31%; p 0.05). The risk reduction led to a number-needed-to-treat of 5.3 for INT. Lifestyle intervention with a low-carbohydrate formula diet reduces prediabetes prevalence stronger than lifestyle intervention alone and is effective for type 2 diabetes prevention

    High-protein, low-glycaemic meal replacement decreases fasting insulin and inflammation markers — a 12-month subanalysis of the ACOORH trial

    Get PDF
    Abstract: Lifestyle interventions, including meal replacement, are effective in the prevention and treatment of type-2-diabetes and overweight. Since insulin is the key weight regulator, we hypothesised that addition of meal replacement to a lifestyle intervention reduces insulin levels more effective than lifestyle intervention alone. In the international, multicenter randomised-controlled ACOORH-trial (Almased-Concept-against-Overweight-and-Obesity-and-Related-Health-Risk) overweight or obese persons with criteria of metabolic syndrome (n=463) were randomised into two groups. Both groups received nutritional advice focussing on carbohydrate restriction and telemonitoring devices. The intervention group substituted all three main meals/day in week 1, two meals/day in week 2–4, and one meal/day in week 5–26 with a protein-rich, low-glycaemic meal replacement. Data were collected at baseline, after 1, 3, 6 and 12 months. All datasets providing insulin data (n=446) were included in this predefined subanalysis. Significantly stronger reductions of insulin (-3.3±8.7μU/ml vs. -1.6±9.8μU/ml), weight (-6.1±5.kg vs. -3.2±4.6kg) and inflammation markers were observed in the intervention group. Insulin reduction correlated with weight reduction and strongest weight loss (-7.6±4.9kg) was observed in those participants with insulin decrease >2μU/ml. These results underline the potential of meal replacement-based lifestyle interventions in diabetes prevention, and measurement of insulin may serve as an indicator for adherence to carbohydrate restriction

    Early and strong leptin reduction is predictive for long-term weight loss during high-protein, low-glycaemic meal replacement: a subanalysis of the randomised-controlled ACOORH trial

    Get PDF
    Lifestyle interventions including meal replacement are suitable for prevention and treatment of obesity and type-2-diabetes. Since leptin is involved in weight regulation, we hypothesised that a meal replacement-based lifestyle intervention would reduce leptin levels more effectively than lifestyle intervention alone. In the international, multicentre, randomised-controlled ACOORH-trial (Almased-Concept-against-Overweight-and-Obesity-and-Related- Health-Risk), overweight or obese participants with metabolic syndrome criteria ( = 463) were randomised into two groups and received telemonitoring devices and nutritional advice. The intervention group additionally used a protein-rich, low-glycaemic meal replacement. Data were collected at baseline, after 1, 3, 6, and 12 months. All datasets providing leptin data ( = 427) were included in this predefined subanalysis. Serum leptin levels significantly correlated with sex, body mass index, weight, and fat mass at baseline ( < 0.0001). Stronger leptin reduction has been observed in the intervention compared to the control group with the lowest levels after 1 month of intervention (estimated treatment difference -3.4 µg/L [1.4; 5.4] for females; -2.2 µg/L [1.2; 3.3] for males; < 0.001 each) and was predictive for stronger reduction of body weight and fat mass ( < 0.001 each) over 12 months. Strongest weight loss was observed after 6 months (-5.9 ± 5.1 kg in females of the intervention group vs. -2.9 ± 4.9 kg in the control group ( < 0.0001); -6.8 ± 5.3 kg vs. -4.1 ± 4.4 kg ( = 0.003) in males) and in those participants with combined leptin and insulin decrease. A meal replacement-based lifestyle intervention effectively reduces leptin which is predictive for long-term weight loss

    Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment

    Full text link
    Biodiversity is rapidly declining1, and this may negatively affect ecosystem processes, including economically important ecosystem services. Previous studies have shown that biodiversity has positive effects on organisms and processes4 across trophic levels. However, only a few studies have so far incorporated an explicit food-web perspective. In an eight-year biodiversity experiment, we studied an unprecedented range of above- and below-ground organisms and multitrophic interactions. A multitrophic data set originating from a single long-term experiment allows mechanistic insights that would not be gained from meta-analysis of different experiments. Here we show that plant diversity effects dampen with increasing trophic level and degree of omnivory. This was true both for abundance and species richness of organisms. Furthermore, we present comprehensive above-ground/below-ground biodiversity food webs. Both above ground and below ground, herbivores responded more strongly to changes in plant diversity than did carnivores or omnivores. Density and richness of carnivorous taxa was independent of vegetation structure. Below-ground responses to plant diversity were consistently weaker than above-ground responses. Responses to increasing plant diversity were generally positive, but were negative for biological invasion, pathogen infestation and hyperparasitism. Our results suggest that plant diversity has strong bottom-up effects on multitrophic interaction networks, with particularly strong effects on lower trophic levels. Effects on higher trophic levels are indirectly mediated through bottom-up trophic cascades

    Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands

    Get PDF
    The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands

    A comparison of the strength of biodiversity effects across multiple functions

    Get PDF
    In order to predict which ecosystem functions are most at risk from biodiversity loss, meta-analyses have generalised results from biodiversity experiments over different sites and ecosystem types. In contrast, comparing the strength of biodiversity effects across a large number of ecosystem processes measured in a single experiment permits more direct comparisons. Here, we present an analysis of 418 separate measures of 38 ecosystem processes. Overall, 45% of processes were significantly affected by plant species richness, suggesting that, while diversity affects a large number of processes not all respond to biodiversity. We therefore compared the strength of plant diversity effects between different categories of ecosystem processes, grouping processes according to the year of measurement, their biogeochemical cycle, trophic level and compartment (above- or belowground) and according to whether they were measures of biodiversity or other ecosystem processes, biotic or abiotic and static or dynamic. Overall, and for several individual processes, we found that biodiversity effects became stronger over time. Measures of the carbon cycle were also affected more strongly by plant species richness than were the measures associated with the nitrogen cycle. Further, we found greater plant species richness effects on measures of biodiversity than on other processes. The differential effects of plant diversity on the various types of ecosystem processes indicate that future research and political effort should shift from a general debate about whether biodiversity loss impairs ecosystem functions to focussing on the specific functions of interest and ways to preserve them individually or in combinatio

    The Capabilities of Dedicated Small Satellite Infrared Missions for the Quantitative Characterization of Wildfires

    No full text
    The main objective of this paper was to demonstrate the capability of dedicated small satellite infrared sensors with cooled quantum detectors, such as those successfully utilized three times in Germany’s pioneering BIRD and FireBIRD small satellite infrared missions, in the quantitative characterization of high-temperature events such as wildfires. The Bi-spectral Infrared Detection (BIRD) mission was launched in October 2001. The space segment of FireBIRD consists of the small satellites Technologie Erprobungs-Träger (TET-1), launched in July 2012, and Bi-spectral InfraRed Optical System (BIROS), launched in June 2016. These missions also significantly improved the scientific understanding of space-borne fire monitoring with regard to climate change. The selected examples compare the evaluation of quantitative characteristics using data from BIRD or FireBIRD and from the operational polar orbiting IR sensor systems MODIS, SLSTR and VIIRS. Data from the geostationary satellite “Himawari-8” were compared with FireBIRD data, obtained simultaneously. The geostationary Meteosat Third Generation-Imager (MTG-I) is foreseen to be launched at the end of 2022. In its application to fire, the MTG-I’s Flexible Combined Imager (FCI) will provide related spectral bands at ground sampling distances (GSD) of 3.8 µm and 10.5 µm at the sub-satellite point (SSP) of 1 km or 2 km, depending on the used FCI imaging mode. BIRD wildfire data, obtained over Africa and Portugal, were used to simulate the fire detection and monitoring capability of MTG-I/FCI. A new quality of fire monitoring is predicted, if the 1 km resolution wildfire data from MTG-1/FCI are used together with the co-located fire data acquired by the polar orbiting Visible Infrared Imaging Radiometer Suite (VIIRS), and possibly prospective FireBIRD-type compact IR sensors flying on several small satellites in various low Earth orbits (LEOs)
    • …
    corecore