610 research outputs found

    Retargeted adenoviruses for radiation-guided gene delivery

    Get PDF
    The combination of radiation with radiosensitizing gene delivery or oncolytic viruses promises to provide an advantage that could improve the therapeutic results for glioblastoma. X-rays can induce significant molecular changes in cancer cells. We isolated the GIRLRG peptide that binds to radiation-inducible 78 kDa glucose-regulated protein (GRP78), which is overexpressed on the plasma membranes of irradiated cancer cells and tumor-associated microvascular endothelial cells. The goal of our study was to improve tumor-specific adenovirus-mediated gene delivery by selectively targeting the adenovirus binding to this radiation-inducible protein. We employed an adenoviral fiber replacement approach to conduct a study of the targeting utility of GRP78-binding peptide. We have developed fiber-modified adenoviruses encoding the GRP78-binding peptide inserted into the fiber-fibritin. We have evaluated the reporter gene expression of fiber-modified adenoviruses in vitro using a panel of glioma cells and a human D54MG tumor xenograft model. The obtained results demonstrated that employment of the GRP78-binding peptide resulted in increased gene expression in irradiated tumors following infection with fiber-modified adenoviruses, compared with untreated tumor cells. These studies demonstrate the feasibility of adenoviral retargeting using the GRP78-binding peptide that selectively recognizes tumor cells responding to radiation treatment

    Learning difficulties : a portuguese perspective of a universal issue

    Get PDF
    In this article we present findings of a study that was conducted with the purpose of deepening the knowledge about the field of learning difficulties in Portugal. Therefore, within these findings we will discuss across several cultural boundaries, themes related with the existence of learning difficulties as a construct, the terminology, the political, social and scientific influences on the field, and the models of identification and of ongoing school support for students. While addressing the above-mentioned themes we will draw attention to the different, yet converging, international understandings of learning difficulties

    Normalization of impaired emotion inhibition in bipolar disorder mediated by cholinergic neurotransmission in the cingulate cortex

    Get PDF
    The muscarinic-cholinergic system is involved in the pathophysiology of bipolar disorder (BD), and contributes to attention and the top-down and bottom-up cognitive and affective mechanisms of emotional processing, functionally altered in BD. Emotion processing can be assessed by the ability to inhibit a response when the content of the image is emotional. Impaired regulatory capacity of cholinergic neurotransmission conferred by reduced M2-autoreceptor availability is hypothesized to play a role in elevated salience of negative emotional distractors in euthymic BD relative to individuals with no history of mood instability. Thirty-three euthymic BD type-I (DSM-V-TR) and 50 psychiatrically-healthy controls underwent functional magnetic resonance imaging (fMRI) and an emotion-inhibition paradigm before and after intravenous cholinergic challenge using the acetylcholinesterase inhibitor, physostigmine (1 mg), or placebo. Mood, accuracy, and reaction time on either recognizing or inhibiting a response associated with an image involving emotion and regional functional activation were examined for effects of cholinergic challenge physostigmine relative to placebo, prioritizing any interaction with the diagnostic group. Analyses revealed that (1) at baseline, impaired behavioral performance was associated with lower activation in the anterior cingulate cortex in BD relative to controls during emotion processing; (2) physostigmine (vs. placebo) affected behavioral performance during the inhibition of negative emotions, without altering mood, and increased activation in the posterior cingulate cortex in BD (vs. controls); (3) In BD, lower accuracy observed during emotion inhibition of negative emotions was remediated by physostigmine and was associated with cingulate cortex overactivation. Our findings implicate abnormal regulation of cholinergic neurotransmission in the cingulate cortices in BD, which may mediate exaggerated emotional salience processing, a core feature of BD

    Aberrant Otx2 Expression Enhances Migration and Induces Ectopic Proliferation of Hindbrain Neuronal Progenitor Cells

    Get PDF
    Dysregulation of Otx2 is a hallmark of the pediatric brain tumor medulloblastoma, yet its functional significance in the establishment of these tumors is unknown. Here we have sought to determine the functional consequences of Otx2 overexpression in the mouse hindbrain to characterize its potential role in medulloblastoma tumorigenesis and identify the cell types responsive to this lineage-specific oncogene. Expression of Otx2 broadly in the mouse hindbrain resulted in the accumulation of proliferative clusters of cells in the cerebellar white matter and dorsal brainstem of postnatal mice. We found that brainstem ectopia were derived from neuronal progenitors of the rhombic lip and that cerebellar ectopia were derived from granule neuron precursors (GNPs) that had migrated inwards from the external granule layer (EGL). These hyperplasias exhibited various characteristics of medulloblastoma precursor cells identified in animal models of Shh or Wnt group tumors, including aberrant localization and altered spatiotemporal control of proliferation. However, ectopia induced by Otx2 differentiated and dispersed as the animals reached adulthood, indicating that factors restricting proliferative lifespan were a limiting factor to full transformation of these cells. These studies implicate a role for Otx2 in altering the dynamics of neuronal progenitor cell proliferation

    Changes in the ornithine cycle following ionising radiation cause a cytotoxic conditioning of the culture medium of H35 hepatoma cells

    Get PDF
    Cultured H35 hepatoma cells release a cytotoxic factor in response to irradiation with X-rays. When the conditioned medium from irradiated cells is given to nonirradiated cells, growth is inhibited and followed by cell death, possibly apoptosis, Analysis of the conditioned medium reveals a dramatic change in the ornithine (urea) cycle components after the irradiation. A strong decrease in medium arginine is accompanied with parallel increases in ornithine, citrulline and ammonia. The high level of ammonia appears to be largely responsible for the observed cytotoxicity. The development of hyperammonia by irradiated cells and the related toxicity depend on the radiation dose and the number of cells seeded thereafter for the medium conditioning. Development of cytotoxicity by irradiated cells is completely prevented with the arginase inhibitor L-norvaline, in arginine-deficient medium or when citrulline replaces arginine. These preventive measures result in subtoxic ammonia levels
    • …
    corecore