75 research outputs found
Death and transfiguration in static staphylococcus epidermidis cultures
The overwhelming majority of bacteria live in slime embedded microbial communities termed biofilms, which are typically adherent to a surface. However, when several Staphylococcus epidermidis strains were cultivated in static liquid cultures, macroscopic aggregates were seen floating within the broth and also sedimented at the test tube bottom. Light- and electron microscopy revealed that early-stage aggregates consisted of bacteria and extracellular matrix, organized in sheetlike structures. Perpendicular under the sheets hung a network of periodically arranged, bacteria-associated strands. During the extended cultivation, the strands of a subpopulation of aggregates developed into cross-connected wall-like structures, in which aligned bacteria formed the walls. The resulting architecture had a compartmentalized appearance. In late-stage cultures, the wall-associated bacteria disintegrated so that, henceforth, the walls were made of the coalescing remnants of lysed bacteria, while the compartment-like organization remained intact. At the same time, the majority of strand containing aggregates with associated culturable bacteria continued to exist. These observations indicate that some strains of Staphylococcus epidermidis are able to build highly sophisticated structures, in which a subpopulation undergoes cell lysis, presumably to provide continued access to nutrients in a nutrient-limited environment, whilst maintaining structural integrity
Detection and Physicochemical Characterization of Membrane Vesicles (MVs) of Lactobacillus reuteri DSM 17938
Membrane vesicles (MVs) are bilayer structures which bleb from bacteria, and are important in trafficking biomolecules to other bacteria or host cells. There are few data about MVs produced by the Gram-positive commensal-derived probiotic Lactobacillus reuteri; however, MVs from this species may have potential therapeutic benefit. The aim of this study was to detect and characterize MVs produced from biofilm (bMVs), and planktonic (pMVs) phenotypes of L. reuteri DSM 17938. MVs were analyzed for structure and physicochemical characterization by Scanning Electron Microscope (SEM) and Dynamic Light Scattering (DLS). Their composition was interrogated using various digestive enzyme treatments and subsequent Transmission Electron Microscopy (TEM) analysis. eDNA (extracellular DNA) was detected and quantified using PicoGreen. We found that planktonic and biofilm of L. reuteri cultures generated MVs with a broad size distribution. Our data also showed that eDNA was associated with pMVs and bMVs (eMVsDNA). DNase I treatment demonstrated no modifications of MVs, suggesting that an eDNA-MVs complex protected the eMVsDNA. Proteinase K and Phospholipase C treatments modified the structure of MVs, showing that lipids and proteins are important structural components of L. reuteri MVs. The biological composition and the physicochemical characterization of MVs generated by the probiotic L. reuteri may represent a starting point for future applications in the development of vesicles-based therapeutic systems
Cephalosporin-NO-donor prodrug PYRRO-C3D shows β-lactam-mediated activity against Streptococcus pneumoniae biofilms
Bacterial biofilms show high tolerance towards antibiotics and are a significant problem in clinical settings where they are a primary cause of chronic infections. Novel therapeutic strategies are needed to improve anti-biofilm efficacy and support reduction in antibiotic use. Treatment with exogenous nitric oxide (NO) has been shown to modulate bacterial signaling and metabolic processes that render biofilms more susceptible to antibiotics. We previously reported on cephalosporin-3\u27-diazeniumdiolates (C3Ds) as NO-donor prodrugs designed to selectively deliver NO to bacterial infection sites following reaction with β-lactamases. With structures based on cephalosporins, C3Ds could, in principal, also be triggered to release NO following β-lactam cleavage mediated by transpeptidases/penicillin-binding proteins (PBPs), the antibacterial target of cephalosporin antibiotics. Transpeptidase-reactive C3Ds could potentially show both NO-mediated anti-biofilm properties and intrinsic (β-lactam-mediated) antibacterial effects. This dual-activity concept was explored using Streptococcus pneumoniae, a species that lacks β-lactamases but relies on transpeptidases for cell-wall synthesis. Treatment with PYRRO-C3D (a representative C3D containing the diazeniumdiolate NO donor PYRRO-NO) was found to significantly reduce viability of planktonic and biofilm pneumococci, demonstrating that C3Ds can elicit direct, cephalosporin-like antibacterial activity in the absence of β-lactamases. While NO release from PYRRO-C3D in the presence of pneumococci was confirmed, the anti-pneumococcal action of the compound was shown to arise exclusively from the β-lactam component and not through NO-mediated effects. The compound showed similar potency to amoxicillin against S. pneumoniae biofilms and greater efficacy than azithromycin, highlighting the potential of C3Ds as new agents for treating pneumococcal infections
Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis
Despite aggressive antibiotic therapy, bronchopulmonary colonization by Pseudomonas aeruginosa causes persistent morbidity and mortality in cystic fibrosis (CF). Chronic P. aeruginosa infection in the CF lung is associated with structured, antibiotic-tolerant bacterial aggregates known as biofilms. We have demonstrated the effects of non-bactericidal, low-dose nitric oxide (NO), a signaling molecule that induces biofilm dispersal, as a novel adjunctive therapy for P. aeruginosa biofilm infection in CF in an ex vivo model and a proof-of-concept double-blind clinical trial. Submicromolar NO concentrations alone caused disruption of biofilms within ex vivo CF sputum and a statistically significant decrease in ex vivo biofilm tolerance to tobramycin and tobramycin combined with ceftazidime. In the 12-patient randomized clinical trial, 10 ppm NO inhalation caused significant reduction in P. aeruginosa biofilm aggregates compared with placebo across 7 days of treatment. Our results suggest a benefit of using low-dose NO as adjunctive therapy to enhance the efficacy of antibiotics used to treat acute P. aeruginosa exacerbations in CF. Strategies to induce the disruption of biofilms have the potential to overcome biofilm-associated antibiotic tolerance in CF and other biofilm-related diseases
Low concentrations of nitric oxide modulate Streptococcus pneumoniae biofilm metabolism and antibiotic tolerance
Streptococcus pneumoniae is one of the key pathogens responsible for otitis media (OM), the most common infection in children and the largest cause of childhood antibiotic prescription. Novel therapeutic strategies that reduce the overall antibiotic consumption due to OM are required because although widespread pneumococcal conjugate immunization has controlled invasive pneumococcal disease, overall OM incidence has not decreased. Biofilm formation represents an important phenotype contributing to the antibiotic tolerance and persistence of S. pneumoniae in chronic or recurrent OM. We investigated the treatment of pneumococcal biofilms with nitric oxide (NO), an endogenous signaling molecule and therapeutic agent that has been demonstrated to trigger biofilm dispersal in other bacterial species. We hypothesised that addition of low concentrations of NO to pneumococcal biofilms would improve antibiotic efficacy and higher concentrations exert direct antibacterial effects. Unlike in many other bacterial species, low concentrations of NO, did not result in S. pneumoniae biofilm dispersal. Instead, treatment of both in vitro biofilms and ex vivo adenoid tissue samples (a reservoir for S. pneumoniae biofilms) with low concentrations of NO enhanced pneumococcal killing when combined with amoxicillin-clavulanic acid, an antibiotic commonly used to treat chronic OM. Quantitative proteomic analysis using iTRAQ (isobaric tag for relative and absolute quantitation) identified 13 proteins that were differentially expressed following low-concentration NO treatment, 85% of which function in metabolism or translation. Treatment with low-concentration NO therefore appears to modulate pneumococcal metabolism and may represent a novel therapeutic approach to reduce antibiotic tolerance in pneumococcal biofilms
Environmental and genetic factors influencing biofilm structure
It is increasingly evident that biofilms growing in a diverse range of medical, industrial, and natural environments form a similarly diverse range of complex structures (Stoodley et al., 1999a). These structures often contain water channels which can increase the supply of nutrients to cells in the biofilm (deBeer and Stoodley 1995) and prompted Costerton et al., (1995) to propose that the water channels may serve as a rudimentary circulatory system of benefit to the biofilm as a whole. This concept suggests that biofilm structure may be controlled, to some extent, by the organisms themselves and may be optimized for a certain set of environmental conditions. To date most of the research on biofilm structure has been focused on the influence of external environmental factors such as surface chemistry and roughness, physical forces (i.e. hydrodynamic shear), or nutrient conditions and the chemistry of the aqueous environment. However, there has been a recent increase in the number of researchers using molecular techniques to study the genetic regulation of biofilm formation and development. Davies et al. (1998) demonstrated that the structure of a Pseudomonas aeruginosa biofilm could be controlled through production of the cell signal (or pheromone) N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). In this paper we will examine some of the research that has been conducted in our labs and the labs of others on the relative contribution of hydrodynamics, nutrients and cell signalling to the structure and behaviour of bacterial biofilms
Developmental regulation of microbial biofilms
Sophisticated molecular and microscopic methods used to study biofilm formation are rapidly broadening our understanding of surface-attached microbial communities in a wide variety of organisms. Regulatory mechanisms involved in the attachment and subsequent development of mature biofilms are being elucidated. Common themes are beginning to emerge, providing promise for the development of sophisticated control strategies
- …