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Cephalosporin-NO-donor prodrug PYRRO-C3D shows β-lactam-
mediated activity against Streptococcus pneumoniae biofilms

Abstract
Bacterial biofilms show high tolerance towards antibiotics and are a significant problem in clinical settings
where they are a primary cause of chronic infections. Novel therapeutic strategies are needed to improve anti-
biofilm efficacy and support reduction in antibiotic use. Treatment with exogenous nitric oxide (NO) has
been shown to modulate bacterial signaling and metabolic processes that render biofilms more susceptible to
antibiotics. We previously reported on cephalosporin-3'-diazeniumdiolates (C3Ds) as NO-donor prodrugs
designed to selectively deliver NO to bacterial infection sites following reaction with β-lactamases. With
structures based on cephalosporins, C3Ds could, in principal, also be triggered to release NO following β-
lactam cleavage mediated by transpeptidases/penicillin-binding proteins (PBPs), the antibacterial target of
cephalosporin antibiotics. Transpeptidase-reactive C3Ds could potentially show both NO-mediated anti-
biofilm properties and intrinsic (β-lactam-mediated) antibacterial effects. This dual-activity concept was
explored using Streptococcus pneumoniae, a species that lacks β-lactamases but relies on transpeptidases for
cell-wall synthesis. Treatment with PYRRO-C3D (a representative C3D containing the diazeniumdiolate NO
donor PYRRO-NO) was found to significantly reduce viability of planktonic and biofilm pneumococci,
demonstrating that C3Ds can elicit direct, cephalosporin-like antibacterial activity in the absence of β-
lactamases. While NO release from PYRRO-C3D in the presence of pneumococci was confirmed, the anti-
pneumococcal action of the compound was shown to arise exclusively from the β-lactam component and not
through NO-mediated effects. The compound showed similar potency to amoxicillin against S. pneumoniae
biofilms and greater efficacy than azithromycin, highlighting the potential of C3Ds as new agents for treating
pneumococcal infections.
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Abstract 51	

Bacterial biofilms show high tolerance towards antibiotics and are a significant problem in 52	

clinical settings where they are a primary cause of chronic infections. Novel therapeutic 53	

strategies are needed to improve anti-biofilm efficacy and support reduction in antibiotic use. 54	

Treatment with exogenous nitric oxide (NO) has been shown to modulate bacterial signaling 55	

and metabolic processes that render biofilms more susceptible to antibiotics. We previously 56	

reported on cephalosporin-3’-diazeniumdiolates (C3Ds) as NO-donor prodrugs designed to 57	

selectively deliver NO to bacterial infection sites following reaction with β-lactamases. With 58	

structures based on cephalosporins, C3Ds could, in principal, also be triggered to release NO 59	

following β-lactam cleavage mediated by transpeptidases/penicillin-binding proteins (PBPs), 60	

the antibacterial target of cephalosporin antibiotics. Transpeptidase-reactive C3Ds could 61	

potentially show both NO-mediated anti-biofilm properties and intrinsic (β-lactam-mediated) 62	

antibacterial effects. This dual-activity concept was explored using Streptococcus 63	

pneumoniae, a species that lacks β-lactamases but relies on transpeptidases for cell-wall 64	

synthesis. Treatment with PYRRO-C3D (a representative C3D containing the 65	

diazeniumdiolate NO donor PYRRO-NO) was found to significantly reduce viability of 66	

planktonic and biofilm pneumococci, demonstrating that C3Ds can elicit direct, 67	

cephalosporin-like antibacterial activity in the absence of β-lactamases. While NO release 68	

from PYRRO-C3D in the presence of pneumococci was confirmed, the anti-pneumococcal 69	

action of the compound was shown to arise exclusively from the β-lactam component and not 70	

through NO-mediated effects. The compound showed similar potency to amoxicillin against 71	

S. pneumoniae biofilms and greater efficacy than azithromycin, highlighting the potential of 72	

C3Ds as new agents for treating pneumococcal infections.  73	

 74	
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1. Introduction 93	

Bacterial biofilms are widely acknowledged as a significant problem in chronic 94	

clinical infections due to their increased antibiotic tolerance compared to planktonic (free-95	

living) bacteria and their propensity to acquire antimicrobial resistance (AMR). These diverse 96	

bacterial communities have evolved multiple mechanisms that contribute to tolerance. 97	

Adaptive responses, including increased expression of efflux pumps and β-lactamases, along 98	

with restricted diffusion of antibiotics through the biofilm matrix, all confer tolerance. 99	

However, it is the presence of metabolically dormant cells that potentially plays the major 100	

role[1; 2; 3]. Nutrient gradients within biofilms can result in a proportion of the bacterial 101	

population adopting a metabolically dormant state, creating ‘persister’ cells that are highly 102	

tolerant towards antibiotics targeting bacterial growth and reproduction. Biofilm formation 103	

has also been implicated in the development of increased resistance through heightened 104	

mutation frequency and horizontal gene transfer[2]. Novel therapeutic strategies that 105	

overcome antimicrobial tolerance responses, limit development of AMR and reduce reliance 106	

upon conventional antibiotics are needed to create effective new treatments for biofilm-107	

mediated chronic infections. 108	

Nitric oxide (NO) is an ubiquitous signaling molecule across eukaryotic and 109	

prokaryotic systems. The presence of low concentrations of exogenous NO has been shown 110	

to modulate a range of functions in several bacterial species, such as toxin biosynthesis and 111	

protection from oxidative stress[4; 5]. Low NO concentrations also play an important role in 112	

bacterial biofilm biology, where they have been shown to signal a dispersal response in a 113	

broad range of species, including Pseudomonas aeruginosa, Staphylococcus aureus and 114	

Escherichia coli[6]. In Streptococcus pneumoniae, NO treatment of established biofilms was 115	

recently shown to influence metabolism and translational activity, modulating both towards 116	

levels observed in the planktonic phenotype[7]. Use of NO as adjunctive therapy in 117	
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combination with conventional antibiotics has thus emerged as a possible anti-biofilm 118	

strategy because the NO-mediated transition from biofilm to planktonic states renders 119	

bacterial cells more susceptible to antibiotic treatments[7; 8; 9]. 120	

Whilst effective in signaling biofilm dispersal and eliciting other anti-biofilm 121	

responses in vitro, clinical implementation of adjunctive NO therapy with antibiotics in 122	

infectious diseases presents several challenges: (a) NO in gaseous form could only be used 123	

for a limited range of infections (e.g. body surface and bronchopulmonary infections); (b) use 124	

of NO donor compounds that spontaneously release NO in aqueous solution (e.g. sodium 125	

nitroprusside, SNP) for internal infections would present significant toxicity risks due to 126	

systemic exposure of the host to NO[10]; and (c) developing NO-donor/antibiotic 127	

combinations is difficult due to divergent pharmacokinetics and other drug properties of the 128	

two molecules. In addition, the lack of specificity towards bacteria and its short half-life 129	

make NO treatment of biofilm infections challenging[6]. To address these issues, we are 130	

investigating cephalosporin-3´-diazeniumdiolates (C3Ds) as novel, biofilm-activated NO-131	

donor prodrugs. 132	

C3Ds contain a stabilized diazeniumdiolate NO-donor (NONOate) attached at the 3’-133	

position of early generation cephalosporins and were designed to selectively deliver NO to 134	

biofilm infection sites following β-lactam ring cleavage mediated by bacterial β-lactamases. 135	

It was envisaged that the compounds could be used as targeted NO carriers in combination 136	

with conventional antibiotics to treat chronic, β-lactamase expressing, biofilm infections 137	

(Figure 1)[11; 12]. We have previously reported that PYRRO-C3D increases the sensitivity 138	

of non-typeable Haemophilus influenzae biofilms to treatment with azithromycin, a response 139	

that was dependent on NO-release following β-lactamase cleavage[13]. It is conceivable, 140	

however, that liberation of NO from C3Ds might also be triggered by reaction with 141	

transpeptidases/penicillin-binding proteins (PBPs)[11], the molecular target of clinical 142	
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cephalosporin antibiotics, since the mechanism of β-lactam hydrolysis (and ensuing 143	

elimination of the NONOate) by β-lactamases and transpeptidases would be identical (Figure 144	

1). In addition to releasing NO and triggering anti-biofilm responses (including dispersion in 145	

some species), reaction of transpeptidases with the β-lactam of C3Ds should, in principle, 146	

also produce direct antibacterial effects. Dual-activity of this type would support thorough 147	

exploration of C3Ds in a range of infectious disease indications as “all-in-one” anti-biofilm 148	

cephalosporins that don’t require co-administered antibiotics (Figure 1). 149	

 150	

 151	

Figure 1: Mechanism of NO release from cephalosporin-3’-diazeniumdiolates (C3Ds, e.g. 152	

PYRRO-C3D) and proposed effects arising from reaction with PBPs versus β-lactamases. 153	

 154	

S. pneumoniae is a Gram-positive opportunistic pathogen and the causative agent of 155	

various invasive infections, such as meningitis and pneumonia, as well as localized mucosal 156	

infections (e.g. sinusitis and otitis media). Despite introduction of pneumococcal conjugate 157	

vaccines, the clinical incidence of pneumococcal otitis media has stayed largely unchanged 158	

due to serotype replacement, and otitis media remains a primary cause of antibiotic 159	

prescription in children[14; 15; 16; 17; 18]. S. pneumoniae is also a non-β-lactamase-160	

producing organism that uses transpeptidases/PBPs in the construction of its cell wall[19]. 161	
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Treatment with high concentrations of NO has been shown to produce antibacterial effects on 162	

pneumococci when present as in vitro biofilms, on the surfaces of adenoid tissue samples ex 163	

vivo, and in the lungs of mice that develop pneumonia following intranasal infection[7; 20]. 164	

We considered S. pneumoniae an excellent bacterial model to test whether a representative 165	

C3D (i.e. PYRRO-C3D K+ salt, Figure 1) could show direct β-lactam-mediated antibacterial 166	

activity (through reaction with PBPs) and NO-mediated anti-biofilm effects without 167	

confounding effects from β-lactamases. This dual-activity concept was explored by 168	

measuring the direct antibacterial effects of PYRRO-C3D on planktonic and biofilm S. 169	

pneumoniae, and probing whether the observed responses were mediated by PBP inactivation 170	

and/or NO.  171	

 172	

2. Material and Methods 173	

2.1 Bacterial strains and growth conditions.  174	

A S. pneumoniae serotype 14 (ST124) clinical isolate[21] and a Serotype 2 strain (D39) 175	

containing the plasmid pMV158GFP[22] were used in this study. Strains were subcultured 176	

from frozen stocks onto Columbia blood agar (CBA) plates (Oxoid; PB0122), as described 177	

previously[21]. Briefly, cultures were incubated at 37 oC/5% CO2 and colonies re-suspended 178	

in fresh Brain Heart Infusion (BHI) broth (Oxoid; CM1135) for use in experiments. 179	

 180	

2.2 In vitro planktonic experiments.  181	

Flat-bottomed 96-well culture plates (Fisher Scientific) were inoculated with 1.0 x 107 182	

bacteria per well (mid-exponential planktonic cultures) grown in BHI. Stock solutions of 183	

PYRRO-C3D, DEA/NO[7], and cephaloram (all 10 mM in dimethyl sulfoxide, DMSO) were 184	

diluted in BHI and added to wells at final concentrations ranging from 9 nM  ̶  90 µM. 185	

Equivalent BHI volumes with1% DMSO were added in place of treatments for untreated 186	
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controls. Equivalent concentrations of PYRRO-C3D, DEA/NO and cephaloram alone (i.e. in 187	

the absence of bacteria) were used to control for background absorbances. Cultures were 188	

incubated at 37 oC/5% CO2 and the minimum inhibitory concentration (MIC) obtained by 189	

measuring the absorbance (OD595) after 18 hours (EZ Read 400 spectrophotometer, 190	

Biochrom) (n=3).  191	

 192	

2.3 In vitro biofilm experiments.  193	

Mid-exponential planktonic cultures grown in BHI were used to inoculate individual wells of 194	

untreated polystyrene 6-well plates (1 x 108 cells per well) (Corning Incorporated, Costar). 195	

Wells were supplemented with fresh BHI diluted 1:5 with distilled H2O and the cultures 196	

incubated at 37 oC/5% CO2 under static conditions for 48 h. Spent media was replaced with 197	

warm, freshly diluted 1:5 BHI after 24 h. All assays were performed using 2 technical 198	

replicates of 2 biological replicates (n=4). Prior to compound treatment, media was removed 199	

and the biofilms washed twice with 1:5 diluted BHI. PYRRO-C3D, DEA/NO and 200	

cephaloram stock solutions (10 mM in DMSO) were added to wells at final concentrations 201	

ranging from 1 µM  to 100 µM in 1:5 diluted BHI. Equivalent DMSO concentrations (1%) 202	

were maintained for each treatment, including untreated controls. Carboxy-PTIO potassium 203	

salt (cPTIO), clavulanic acid and penicillinase (all Sigma; C221, P3494 and P0389 204	

respectively) were added at final concentrations of 50 µM, 250 µg/mL and 0.01 U/µL, 205	

respectively. For antibiotic co-treatment experiments, amoxicillin and azithromycin (both 206	

Sigma, A8523 and PZ0007 respectively) were added at final concentrations of 300 µg/mL 207	

and 1 mg/mL, respectively. BHI diluted 1:5 with distilled water and containing an equivalent 208	

concentration of DMSO to the treatment solutions (1%) was included as an untreated control. 209	

Biofilms were incubated at 37 oC/5% CO2 for 2 hours, after which the treatments/media were 210	

removed and the remaining biofilms rinsed twice with 1:5 diluted BHI. Biofilms were then 211	
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resuspended in Hank’s balanced salt solution (HBSS), as previously described[23]. In brief, 212	

biofilms were scraped and vortexed and the resuspended biofilms and supernatants diluted in 213	

HBSS, spot-plated onto CBA plates and incubated at 37 oC/5% CO2 for 18 hours before 214	

enumerating colony-forming units (CFUs). Biofilm biomass was measured as previously 215	

described[7].  216	

 217	

2.4 Measurements of nitric oxide release.  218	

NO release from PYRRO-C3D was measured using an ISO-NO probe (World Precision 219	

Instruments) as per manufacturer’s instructions. To quantify the amount of NO released from 220	

PYRRO-C3D in the absence of bacterial cells, HBSS (pH 7.4) was maintained at 37 ± 0.5 oC 221	

with stirring in a septum-sealed acrylic chamber and baseline NO levels were monitored over 222	

5 min. PYRRO-C3D (100 µM) was then added and the NO signal recorded for 5 min before 223	

adding 10 units of Bacillus cereus penicillinase (Sigma; P0389) and monitoring NO levels for 224	

a further 120 min. To measure release of NO from PYRRO-C3D in the presence of 225	

pneumococcal cells, the ISO-NO probe was submerged into the media and positioned directly 226	

above 48 h serotype 14 biofilms (grown as described above). NO concentrations were 227	

monitored over the ensuing 10 minutes to confirm no endogenous NO production, before 228	

adding 100 µM PYRRO-C3D and recording the NO signal for a further 40 minutes. 229	

 230	

2.5 Confocal Laser Scanning Microscopy (CLSM).  231	

Mid-exponential planktonic cultures of serotype 2 strain D39 (containing the plasmid 232	

pMV158GFP) were grown in BHI and used to inoculate 35 mm untreated glass bottom 233	

CELLview cell culture dishes (Greiner Bio One). The dishes were supplemented with fresh 234	

1:5 diluted BHI and biofilms grown under static conditions at 37 oC/5% CO2 for 48 h, 235	

replacing spent media with fresh 1:5 diluted BHI supplemented with 2 % maltose at 24 h (to 236	
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induce gfp expression). Biofilms were then treated with 100 µM PYRRO-C3D or 100 µM 237	

DEA/NO in 1:5 diluted BHI + 2 % maltose, or 1:5 diluted BHI + 2 % maltose (untreated 238	

control), at 37 oC/5% CO2 for 2 h. Treatments/media were removed and the remaining 239	

biofilms rinsed twice with HBSS and stained with propidium iodide according to 240	

manufacturer’s instructions (ThermoFisher Scientific; P3566). Stained biofilms were 241	

examined immediately using a Leica SP8 CLSM with inverted stand under a 63x oil 242	

immersion lens, performing sequential scanning on 0.5 µm sections. The gfp fluorescence 243	

intensity threshold was set to that of planktonic pneumococci to remove background 244	

extracellular DNA staining. Images were analyzed using Leica LCS Software.  245	

 246	

2.6 Statistical analyses.  247	

Statistical analyses of in vitro planktonic and biofilm data were performed using non-248	

parametric Mann-Whitney t-tests. Comparative data reported as p<0.05 were considered 249	

statistically different.  250	

 251	

3. Results 252	

3.1 PYRRO-C3D treatment reduces viability of planktonic and biofilm S. pneumoniae.  253	

NO release from PYRRO-C3D was examined first in the presence of a β-lactamase 254	

(penicillinase) using the NO probe. PYRRO-C3D (100 µM) showed low-level release of NO 255	

over 5 minutes after being added to HBSS (pH 7.4) at 37 ˚C. Subsequent addition of 10 units 256	

of penicillinase caused a rapid spike of NO, reaching a peak concentration of 450 nM within 257	

5 min, which was followed by a steady decline over 2 h, confirming that PYRRO-C3D 258	

efficiently releases NO following β-lactam ring cleavage (Figure 2a). 259	

 260	



	 12	

 261	

Figure 2: Release of NO from PYRRO-C3D. a) NO release from PYRRO-C3D (100 µM) 262	

was monitored following addition to HBSS (pH 7.4) at 37 ˚C. After 5 mins, 10 units of 263	

penicillinase were added, leading to release of NO from PYRRO-C3D. b) 48 h serotype 14 264	

biofilms showed no detectable endogenous NO signal. Addition of 100 µM PYRRO-C3D to 265	

the biofilm triggered release of NO. 266	

 267	

NO measurements on untreated 48 h serotype 14 pneumococcal biofilms showed no 268	

detectable endogenous NO signal (Figure 2b). Treatment with 100 µM PYRRO-C3D 269	

produced a peak of NO release (~100 nM) after 8 minutes, which was followed by a steady 270	

signal corresponding to ~45 nM NO. Detection of the NO signal in the presence of non-β-271	

lactamase producing S. pneumoniae was consistent with PYRRO-C3D undergoing reaction 272	

with transpeptidases/PBPs to liberate PYRRO-NO (and NO). 273	

 Treatment of planktonic cultures with a range of PYRRO-C3D concentrations (9 nM  ̶ 274	

90 µM) identified the MIC as 900 nM, confirming that the compound shows potent 275	

antibacterial activity against planktonic S. pneumoniae cells (Figure 3a). Equivalent 276	
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concentrations of cephaloram, the cephalosporin antibiotic closest in structure to PYRRO-277	

C3D whilst lacking an NO donor, showed identical activity (MIC = 900 nM). Treatment with 278	

equivalent concentrations of the diazeniumdiolate-based spontaneous NO donor DEA/NO, 279	

however, showed no effect on planktonic growth. Collectively, these findings are consistent 280	

with PYRRO-C3D eliciting anti-pneumococcal effects through reaction of its cephalosporin 281	

β-lactam with PBPs and that, although NO is released from the compound during this 282	

process, it does not contribute directly to the antibacterial effect. 283	

 284	

 285	

Figure 3: Effects of DEA/NO, cephaloram and PYRRO-C3D on the viability of in vitro 286	

S. pneumoniae planktonic cells and biofilms. a) Planktonic S. pneumoniae serotype 14 287	

(ST124) cultures were treated with DEA/NO, cephaloram or PYRRO-C3D for 18 hours and 288	

absorbance (OD595) was measured to determine the minimum inhibitory concentration. b) 48 289	

h serotype 14 biofilms were treated with DEA/NO, cephaloram or PYRRO-C3D for 2 hours 290	

before measuring cell viability in the remaining biofilm population. *p≤0.05. 291	

 292	
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mature (48 hour) in vitro S. pneumoniae biofilms. A two hour treatment time was 294	

investigated based on previous studies that demonstrated i) the response of pneumococcal 295	

biofilms to exogenous NO[7], and ii) the antimicrobial effect of PYRRO-C3D on non-296	
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typeable H. influenzae biofilms[13] following 2 hour treatments. The treatment time was also 297	

chosen based on the NO release profile of PYRRO-C3D whereby little measurable NO was 298	

remaining after 2 hours following activation (Figure 2a). Biofilms were assessed for 299	

pneumococcal viability by CFU enumeration showed a concentration-dependent response to 300	

PYRRO-C3D, culminating in a 3-log reduction in biofilm CFUs at 100 µM (p=0.014) (Figure 301	

3b).  As seen in the planktonic phenotype, cephaloram showed identical activity to PYRRO-302	

C3D (3-log reduction in biofilm CFUs at 100 µM, p=0.029) and DEA/NO showed no effect 303	

below 100 µM (p=0.49). A 4-log reduction was also observed in CFUs grown from the 304	

supernatant surrounding PYRRO-C3D (100 µM) treated cells, compared to untreated controls 305	

(p=0.029, data not shown). 306	

CLSM imaging and biomass measurements of 48 hour biofilms formed by a GFP-307	

expressing serotype 2 strain (D39) showed no change in maximum biofilm height (p=0.57) or 308	

total biomass (p=0.989) following treatment with either 100 µM DEA/NO or PYRRO-C3D 309	

(Figure 4a & b), demonstrating that neither compound triggers an NO-mediated dispersal 310	

response in pneumococcus.  While this is in contrast to the robust dispersal responses seen 311	

following C3D treatment of P. aeruginosa biofilms and NO treatment of biofilms from other 312	

bacteria[8; 9], it is consistent with our recent results showing that NO modulates metabolic 313	

activity but not dispersal in S. pneumoniae biofilms[7]. Similar to the CFU data, treatment 314	

with DEA/NO showed no effect on biofilm viability, whereas a significant reduction in 315	

biofilm viability was observed following PYRRO-C3D treatment (Figure 4c, - e). 316	

 317	
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 318	

Figure 4: Effects of PYRRO-C3D on S. pneumoniae serotype 2 (D39) in vitro biofilms. 319	

Established 48 h D39 biofilms expressing GFP were treated with 100 µM PYRRO-C3D or 320	

DEA/NO for 2 hours and imaged using confocal microscopy. Biofilms were counterstained 321	

with propidium iodide to distinguish dead cells from GFP-expressing viable cells (green). 322	

Treatment with DEA/NO and PYRRO-C3D had no effect on either a) maximum biofilm 323	

height, or b) biofilm biomass compared to untreated controls. Treatment with PYRRO-C3D, 324	

and not DEA/NO, reduced the number of viable bacteria present within the biofilm (c-e). 325	

 326	

3.2 Activity of PYRRO-C3D against pneumococcal biofilms is exclusively mediated 327	

through the cephalosporin β-lactam.  328	

Having established that 100 µM PYRRO-C3D was effective in reducing 329	

pneumococcal viability in biofilms (Figure 3), the treatment was repeated in the presence of 330	

the β-lactamase inhibitor clavulanic acid (250 mg.mL-1). No change in the response to 331	

PYRRO-C3D was observed (p=0.929) (Fig. 5a), confirming that β-lactamases were playing 332	
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no part in the compound’s activity. Treatment of biofilms with 100 µM PYRRO-C3D was 333	

next repeated in the presence of the NO-scavenger cPTIO. Addition of 50 µM cPTIO, which 334	

showed no effect on its own, did not change the activity of PYRRO-C3D (p=0.829, Fig. 5b), 335	

confirming that the NO being released from PYRRO-C3D was having no effect. The effect of 336	

PYRRO-C3D on S. pneumoniae viability was then assessed in the presence of 0.01 U/µL 337	

penicillinase, the same β-lactamase shown to cleave the β-lactam of PYRRO-C3D and 338	

liberate NO (Figure 2). Addition of penicillinase significantly reduced the activity of 339	

PYRRO-C3D (p=0.0286, Fig. 5c). Together these data provide compelling evidence that 340	

PYRRO-C3D produces direct activity against biofilm pneumococci via reaction of its 341	

cephalosporin β-lactam with transpeptidases/PBPs only, and that subsequent release of NO 342	

from the compound produces no measurable effect on cell viability. 343	

 344	

 345	

Figure 5: Response of S. pneumoniae serotype 14 (ST124) in vitro biofilms to PYRRO-346	

C3D treatment in the presence of clavulanic acid, cPTIO and penicillinase. 48 h S. 347	

pneumoniae biofilms were treated with 100 µM PYRRO-C3D for 2 h in the presence of a) 348	

250 µg/mL clavulanic acid, b) 50 µM cPTIO and c) 0.01 unit/µL penicillinase. Pneumococcal 349	

viability in biofilms following treatment was assessed by CFU enumeration. *p≤0.05. 350	
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3.3 PYRRO-C3D shows similar activity to amoxicillin and is more active than 352	

azithromycin against pneumococcal biofilms.  353	

The anti-biofilm activity of PYRRO-C3D was next compared to amoxicillin and 354	

azithromycin, two antibiotics commonly prescribed for the treatment of S. pneumoniae 355	

infections. Established pneumococcal serotype 14 and serotype 2 biofilms were treated for 2 356	

hours with 100 µM PYRRO-C3D, supra-MIC concentrations of amoxicillin (300 µg/mL) or 357	

azithromycin (1 mg/mL), and bacterial viability was assessed by CFU enumeration. PYRRO-358	

C3D and amoxicillin both produced 3-log reductions in viability against serotype 14 and 2-359	

log reductions against serotype 2 (Fig. 6a & b). Treatment with azithromycin, a non-β-lactam 360	

(macrolide) antibiotic, showed no significant effects on serotype 14 (p=0.582) or serotype 2 361	

(p=0.829) viability.  362	

 363	

 364	

Figure 6: Comparison of the antibacterial activities of PYRRO-C3D, amoxicillin and 365	

azithromycin against S. pneumoniae serotype 14 (ST124) and serotype 2 (D39) in vitro 366	

biofilms. Established 48 h a) serotype 14 and b) serotype 2 biofilms were treated with 100 367	
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µM PYRRO-C3D, 300 µg/mL amoxicillin or 1 mg/mL azithromycin for 2 hours and assessed 368	

for pneumococcal viability by CFU enumeration. *p≤0.05; ***p≤0.001. 369	

 370	

4. Discussion 371	

Previous studies showed that low levels of NO were released from our prototype C3D 372	

(DEA-CP) in the presence of non-β-lactamase producing E. coli cell extracts[11] and it was 373	

postulated that the NO release resulted from reaction of the compound with PBPs, the 374	

enzymes responsible for cross-linking peptidoglycan chains during bacterial cell wall 375	

synthesis. It is well known that cephalosporins and other β-lactam antibiotics elicit 376	

antibacterial effects by covalently binding to the active sites of PBPs in a process that also 377	

results in β-lactam ring cleavage[24].  This led us to speculate that reactions between PBPs 378	

and C3Ds might elicit a direct, β-lactam-mediated antibacterial effect and in the process 379	

liberate the NONOate (and NO) (Fig. 1). Since anti-biofilm effects of NO are now well 380	

documented, we postulated that NO released from C3Ds following reaction with PBPs might 381	

confer additional anti-biofilm activity.  382	

We tested this dual-activity hypothesis using non-β-lactamase producing S. 383	

pneumoniae strains that express five high molecular weight PBPs (1a, 1b, 2a, 2b and 2x) and 384	

one low molecular weight PBP3[19]. The absence of β-lactamases ensured that NO released 385	

from the compound must arise from an alternative mechanism, most likely PBP-mediated β-386	

lactam cleavage. The representative C3D selected for the study was PYRRO-C3D, a close 387	

structural analogue of DEA-CP that carries PYRRO/NO (t1/2 = 2 secs) as the NONOate 388	

instead of DEA/NO (t1/2 = 2 min)[25]. PYRRO-C3D was chosen for its faster NO release, 389	

which we believe would be important for C3D use in vivo since diffusion of an expelled 390	

NONOate away from infection sites (before releasing the NO cargo) would reduce 391	

effectiveness and raise NO-mediated safety concerns. 392	
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The ability of PYRRO-C3D to release NO following β-lactam cleavage was 393	

confirmed first by treating the compound with penicillinase and directly observing NO. 394	

Release of NO from PYRRO-C3D in the presence of S. pneumoniae cells lacking β-395	

lactamase was demonstrated, consistent with S. pneumoniae PBPs hydrolysing the 396	

compound’s β-lactam and triggering release of NO. PYRRO-C3D was then shown to reduce 397	

viability of both planktonic and biofilm S. pneumoniae, confirming that the compound shows 398	

direct antibacterial activity against this bacterium. The level of activity was consistent with 399	

the known tendency of biofilms to be less susceptible to antimicrobial treatments than their 400	

planktonic counterparts[26; 27; 28], since treatment with 900 nM PYRRO-C3D completely 401	

inhibited planktonic growth, whereas a significant reduction in biofilm viability (3-log) 402	

required more than 100-fold higher concentrations.  403	

β-lactamases were confirmed as playing no role in PYRRO-C3D’s activity since no 404	

difference was seen in the presence of the β-lactamase inhibitor clavulanic acid. Absence of 405	

antibacterial activity when planktonic and biofilm cultures were treated with the spontaneous 406	

NO-donor DEA/NO provided evidence that the effects of PYRRO-C3D against 407	

pneumococcus are exclusively due to its cephalosporin β-lactam core and are not NO 408	

mediated.  We further observed that the cephalosporin equivalent of PYRRO-C3D lacking a 409	

NONOate (i.e. cephaloram) showed identical activity to PYRRO-C3D, and that addition of 410	

the NO-scavenger cPTIO failed to change PYRRO-C3D activity. Moreover, PYRRO-C3D 411	

significantly reduced (4-log) the number of viable planktonic bacteria remaining in the 412	

surrounding media, likely due to the direct antibacterial effect of PYRRO-C3D. Confocal 413	

imaging and measurements of biomass showed that no significant reduction in biofilm 414	

maximum height or biomass occurred following PYRRO-C3D treatment, but there was a 415	

significant reduction in the number of viable bacteria remaining within biofilms, validating 416	

the reduction in CFUs. These findings together were consistent with PYRRO-C3D acting 417	
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directly as a cephalosporin-like β-lactam antibiotic, a notion further supported by its reduced 418	

activity in the presence of penicillinase. 419	

Finally, the antibacterial activity of PYRRO-C3D towards pneumococcal biofilms 420	

was compared with that of antibiotics commonly used to treat pneumococcal infections. We 421	

found that PYRRO-C3D possessed similar antibacterial efficacy to amoxicillin against both 422	

serotype 2 and 14 biofilms, which is perhaps not surprising given that the compounds are 423	

structurally and functionally very similar, with both targeting PBP-mediated cell wall 424	

synthesis. PYRRO-C3D was found to be much more effective than azithromycin, an 425	

antibiotic that targets protein biosynthesis. 426	

The findings presented here are consistent with our recent study, which showed that 427	

high concentrations of NO (1 mM) are needed to elicit bactericidal effects or enhance 428	

antibiotic efficacy against four different serotypes of pneumococcal in vitro biofilms[7]. The 429	

current study demonstrated that PYRRO-C3D at 100 µM liberates maximum NO 430	

concentrations of ~450 nM and 100 nM upon contact with penicillinase and pneumococcal 431	

cells, respectively. It therefore seems likely that PYRRO-C3D does not release sufficient NO 432	

when activated by PBPs to modulate pneumococcal biofilm metabolism towards the 433	

planktonic phenotype in vitro. This may, however, not be the case in the upper respiratory 434	

tract, for example, where the constitutive release of NO by host cells could have an 435	

augmentative effect, as observed in our recent study where an anti-pneumococcal response to 436	

100 µM NO was seen on host adenoid tissue[7]. 437	

 In summary, this study demonstrated that a representative C3D (PYRRO-C3D) 438	

releases NO and shows direct antibacterial effects against planktonic and biofilm forms of 439	

non-β-lactamase producing S. pneumoniae. The activity was confirmed to arise exclusively 440	

from β-lactam mediated reactions with S. pneumoniae PBPs, with no measurable contribution 441	

coming from the released NO. In the treatment of pneumococcal biofilms, PYRRO-C3D was 442	
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found to be equally as effective as amoxicillin and more effective than azithromycin when 443	

used alone. 444	

 445	

5. Conclusions 446	

Introduction of a diazeniumdiolate at the cephalosporin 3’-position was shown for the 447	

first time to be structurally compatible with binding to the molecular target of β-lactam 448	

antibiotics, PBPs. Medicinal chemistry tuning of the cephalosporin aminoacyl side chain and 449	

diazeniumdiolate portions may identify C3Ds with PBP-mediated activity against other 450	

species, and perhaps even broad-spectrum activity. While the study did not demonstrate that 451	

PYRRO-C3D produces combined NO and β-lactam based anti-biofilm effects against S. 452	

pneumoniae, it is possible that such dual-effects might be observed with C3Ds in other 453	

species and with other analogues. Non-β-lactamase producing bacteria that undergo NO-454	

mediated biofilm dispersion would be of particular interest for future study.   455	
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