4,111 research outputs found

    A multi-scale brain map derived from whole-brain volumetric reconstructions

    Get PDF
    Animal nervous system organization is crucial for all body functions and its disruption can lead to severe cognitive and behavioural impairment1. This organization relies on features across scales—from the localization of synapses at the nanoscale, through neurons, which possess intricate neuronal morphologies that underpin circuit organization, to stereotyped connections between different regions of the brain2. The sheer complexity of this organ means that the feat of reconstructing and modelling the structure of a complete nervous system that is integrated across all of these scales has yet to be achieved. Here we present a complete structure–function model of the main neuropil in the nematode Caenorhabditis elegans—the nerve ring—which we derive by integrating the volumetric reconstructions from two animals with corresponding3 synaptic and gap-junctional connectomes. Whereas previously the nerve ring was considered to be a densely packed tract of neural processes, we uncover internal organization and show how local neighbourhoods spatially constrain and support the synaptic connectome. We find that the C. elegans connectome is not invariant, but that a precisely wired core circuit is embedded in a background of variable connectivity, and identify a candidate reference connectome for the core circuit. Using this reference, we propose a modular network architecture of the C. elegans brain that supports sensory computation and integration, sensorimotor convergence and brain-wide coordination. These findings reveal scalable and robust features of brain organization that may be universal across phyla

    Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating

    Get PDF
    Sexually dimorphic behaviours require underlying differences in the nervous system between males and females. The extent to which nervous systems are sexually dimorphic and the cellular and molecular mechanisms that regulate these differences are only beginning to be understood. We reveal here a novel mechanism by which male-specific neurons are generated in Caenorhabditis elegans through the direct transdifferentiation of sex-shared glial cells. This glia-to-neuron cell fate switch occurs during male sexual maturation under the cell-autonomous control of the sex-determination pathway. We show that the neurons generated are cholinergic, peptidergic, and ciliated putative proprioceptors which integrate into male-specific circuits for copulation. These neurons ensure coordinated backward movement along the mate’s body during mating. One step of the mating sequence regulated by these neurons is an alternative readjustment movement performed when intromission becomes difficult to achieve. Our findings reveal programmed transdifferentiation as a developmental mechanism underlying flexibility in innate behaviour

    The Importance of Craniofacial Sutures in Biomechanical Finite Element Models of the Domestic Pig

    Get PDF
    Craniofacial sutures are a ubiquitous feature of the vertebrate skull. Previous experimental work has shown that bone strain magnitudes and orientations often vary when moving from one bone to another, across a craniofacial suture. This has led to the hypothesis that craniofacial sutures act to modify the strain environment of the skull, possibly as a mode of dissipating high stresses generated during feeding or impact. This study tests the hypothesis that the introduction of craniofacial sutures into finite element (FE) models of a modern domestic pig skull would improve model accuracy compared to a model without sutures. This allowed the mechanical effects of sutures to be assessed in isolation from other confounding variables. These models were also validated against strain gauge data collected from the same specimen ex vivo. The experimental strain data showed notable strain differences between adjacent bones, but this effect was generally not observed in either model. It was found that the inclusion of sutures in finite element models affected strain magnitudes, ratios, orientations and contour patterns, yet contrary to expectations, this did not improve the fit of the model to the experimental data, but resulted in a model that was less accurate. It is demonstrated that the presence or absence of sutures alone is not responsible for the inaccuracies in model strain, and is suggested that variations in local bone material properties, which were not accounted for by the FE models, could instead be responsible for the pattern of results

    The Heartbleed bug : insecurity repackaged, rebranded and resold

    Get PDF
    The emergence of a post-industrial information economy shaped by and around networked communication technology has presented new opportunities for identity theft. In particular, the accidental leakage or deliberate harvesting of information, via either hacking or social engineering, is an omnipresent threat to a large number of commercial organisations and state agencies who manage digital databases and sociotechnical forms of data. Throughout the twenty-first century the global media have reported on a series of data breaches fuelling amongst the public an anxiety concerning the safety and security of their personal and financial data. With concern outpacing reliable information a reassurance gap has emerged between the public's expectations and the state's ability to provide safety and security online. This disparity presents a significant opportunity for a commercial computer crime control industry who has sought to position itself as being able to offer consumer citizens the antidotes for such ills. This paper considers how neoliberal discourses of cybercrime control are packaged, branded and sold, through an examination of the social construction of the Heartbleed bug. It demonstrates how security company Codenomicon masterfully communicated the vulnerability, the product of a simple coding error, through its name, a logo and an accompanying website, in turn, shaping news coverage across the mainstream media and beyond

    DNA-Sequence Variation Among Schistosoma mekongi Populations and Related Taxa; Phylogeography and the Current Distribution of Asian Schistosomiasis

    Get PDF
    Schistosomiasis is a disease caused by parasitic worms of the genus Schistosoma. In the lower Mekong river, schistosomiasis in humans is called Mekong schistosomiasis and is caused by Schistosoma mekongi. In the past, Mekong schistosomiasis was known only from the lower Mekong river. Here DNA-sequence variation is used to study the relationships and history of populations of S. mekongi. Populations from other rivers are compared and shown to be S. mekongi, thus confirming that this species is not restricted to only a small section of one river. The dates of divergence among populations are also estimated. Prior to this study it was assumed that S. mekongi originated in Yunnan, China, migrated southwards across Laos and into Cambodia, later becoming extinct in Laos (due to conditions unsuitable for transmission). In contrast, the dates estimated here indicate that S. mekongi entered Cambodia from Vietnam, 2.5–1 Ma. The pattern of genetic variation fits better with a more recent, and ongoing, northwards migration from Cambodia into Laos. The implications are that Mekong schistosomiasis is more widespread than once thought and that the human population at risk is up to 10 times greater than originally estimated. There is also an increased possibility of the spread of Mekong schistosomiasis across Laos

    Epigenetics as a mechanism driving polygenic clinical drug resistance

    Get PDF
    Aberrant methylation of CpG islands located at or near gene promoters is associated with inactivation of gene expression during tumour development. It is increasingly recognised that such epimutations may occur at a much higher frequency than gene mutation and therefore have a greater impact on selection of subpopulations of cells during tumour progression or acquisition of resistance to anticancer drugs. Although laboratory-based models of acquired resistance to anticancer agents tend to focus on specific genes or biochemical pathways, such 'one gene : one outcome' models may be an oversimplification of acquired resistance to treatment of cancer patients. Instead, clinical drug resistance may be due to changes in expression of a large number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG island methylation of multiple genes occurring in a nonrandom manner during tumour development and during the acquisition of drug resistance provides a mechanism whereby expression of multiple genes could be affected simultaneously resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation of multiple genes is indeed a major driving force behind acquired resistance of patients' tumour to anticancer agents, this has important implications for biomarker studies of clinical outcome following chemotherapy and for clinical approaches designed to circumvent or modulate drug resistance

    Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs

    Get PDF
    Mantle plumes are thought to play a key role in transferring heat from the core\u2013mantle boundary to the lithosphere, where it can significantly influence plate tectonics. On impinging on the lithosphere at spreading ridges or in intra-plate settings, mantle plumes may generate hotspots, large igneous provinces and hence considerable dynamic topography. However, the active role of mantle plumes on subducting slabs remains poorly understood. Here we show that the stagnation at 660 km and fastest trench retreat of the Tonga slab in Southwestern Pacific are consistent with an interaction with the Samoan plume and the Hikurangi plateau. Our findings are based on comparisons between 3D anisotropic tomography images and 3D petrological-thermo-mechanical models, which self-consistently explain several unique features of the Fiji\u2013Tonga region. We identify four possible slip systems of bridgmanite in the lower mantle that reconcile the observed seismic anisotropy beneath the Tonga slab (VSH4VSV) with thermo-mechanical calculations

    Lung Screen Uptake Trial: results from a single lung cancer screening round

    Get PDF
    The Lung Screen Uptake Trial tested a novel invitation strategy to improve uptake and reduce socioeconomic and smoking-related inequalities in lung cancer screening (LCS) participation. It provides one of the first UK-based 'real-world' LCS cohorts. Of 2012 invited, 1058 (52.6%) attended a 'lung health check'. 768/996 (77.1%) in the present analysis underwent a low-dose CT scan. 92 (11.9%) and 33 (4.3%) participants had indeterminate pulmonary nodules requiring 3-month and 12-month surveillance, respectively; 36 lung cancers (4.7%) were diagnosed (median follow-up: 1044 days). 72.2% of lung cancers were stage I/II and 79.4% of non-small cell lung cancer had curative-intent treatment
    • 

    corecore