6,040 research outputs found
On the Application of Strong Magnetic Fields during Organic Crystal Growth
We investigate the effect of crystal growth within a magnetic field for three polymorphic pharmaceuticals, using an experiment where the magnetic field can be varied in strength without altering other crystallization conditions. In the case of carbamazepine, fields above 0.6 T produce metastable form I, and for flufenamic acid, there is an increased propensity to crystallize metastable form I around 1 T. In contrast, the magnetic field has no effect on the crystallization of mefenamic acid, a closely related molecule. The growth of the metastable Ī² polymorph of coronene within a magnetic field at ambient temperature is difficult to reproduce but has been seen as a minor component, consistent with this transformation to the more stable form being facile, depending on the particle size. Calculations of the diamagnetic susceptibility tensors of the polymorphs and their morphologies provide semiquantitative estimates of how the diamagnetic susceptibilities of crystallites differ between polymorphs and explain why mefenamic acid crystallization is unaffected. As the onset of crystallization of carbamazepine and coronene, as defined by changes in turbidity, occur at lower temperatures and hence greater supersaturations in certain ranges of magnetic field strength, this suggests that the field causes precipitation of the metastable form through Ostwaldās rule of stages
Drugs, dogs, and driving: the potential for year-round thermal stress in UK vehicles
Background: Dogs are regularly transported or housed in vehicles, with guidelines for housing dogs suggesting that the ambient temperature should be maintained between 15Ā°C and 24Ā°C. Veterinary drugs are routinely stored and carried in vehicles providing ambulatory veterinary care. Non-refrigerated medications typically require storage between 8Ā°C and 25Ā°C.
Aim: This study aims to investigate the potential for thermal stress associated with vehicular storage and transportation of drugs and dogs in a temperate climate, such as the United Kingdom.
Methods: The study used data loggers to continuously record internal temperatures of four vehicles at 15-minute intervals over a two-year period, to investigate the effect of seasonality and time of day on the internal car temperature.
Results: The internal car temperature ranged from ā7.4Ā°C to 54.5Ā°C during the study period. Temperatures fell below 8Ā°C every month, except June and July. The internal car temperature exceeded typical drug storage recommendations (>25Ā°C) during every month, and exceeded the canine thermoneutral zone (>35Ā°C) from April to September. Peak temperatures occurred between 14:00 and 17:00 hours.
Conclusion: The results demonstrate the year-round potential for thermal stress of both dogs and drugs left in cars. Public awareness campaigns highlighting the risks of leaving dogs in hot cars are typically launched in late spring, but should consider launching earlier in light of these findings. Veterinary surgeons transporting drugs should take measures to ensure that drugs are stored within the manufacturerās temperature range year-round. This will limit the potential for drug degradation and decreased efficacy
Influence of spark plasma sintering parameters on magnetic properties of FeCo alloy
Equiatomic FeCo alloys with average particle size of 24 Ī¼m were sintered using spark plasma sintering (SPS) system at sintering temperatures of 1100, 800, and 850 Ā°C for heating rates 50, 100, 300 Ā°C/min by applying pressure of 50 MPa instantly at room temperature for sintering time of 5 and 15 minutes. The highest saturation induction was achieved at SPS conditions of 50 MPa, 50 Ā°C/min, 1100 Ā°C, without dwelling, of value 2.39 T. The saturation induction was improved with extending sintering time, the coercivity was higher in samples sintered at a fast heating rate in comparison to the slowest heating rate
Traces of volcanic ash from the Mediterranean, Iceland and North America in a Holocene record from South Wales, UK
A tephra record is presented for a sediment core from Llyn Llech Owain, south Wales, spanning the earlyā to midāHolocene. Seven cryptotephra deposits are discovered with three thought to correlate with known eruptions and the remaining four considered to represent previously undocumented events. One deposit is suggested to correlate with the ~6.9ācal ka bp Lairg A tephra from Iceland, whereas more distant sources are proposed as the origin for two of the tephra deposits. A peak of colourless shards in earlyāHolocene sediments is thought to tentatively correlate with the ~9.6ācal ka bp Fondi di Baia tephra (Campi Flegrei) and a second cryptotephra is tentatively correlated with the ~3.6ācal ka bp Aniakchak (CFE) II tephra (Alaska). The Fondi di Baia tephra has never been recorded beyond proximal sites and its discovery in south Wales significantly extends the geographical distribution of ash from this eruption. The remaining four cryptotephra deposits are yet to be correlated with known eruptions, demonstrating that our current understanding of widespread tephra deposits is incomplete. This new tephra record highlights the potential for sites at more southerly and westerly locations in northwest Europe to act as repositories for ash from several volcanic regions
Free randomness can be amplified
Are there fundamentally random processes in nature? Theoretical predictions,
confirmed experimentally, such as the violation of Bell inequalities, point to
an affirmative answer. However, these results are based on the assumption that
measurement settings can be chosen freely at random, so assume the existence of
perfectly free random processes from the outset. Here we consider a scenario in
which this assumption is weakened and show that partially free random bits can
be amplified to make arbitrarily free ones. More precisely, given a source of
random bits whose correlation with other variables is below a certain
threshold, we propose a procedure for generating fresh random bits that are
virtually uncorrelated with all other variables. We also conjecture that such
procedures exist for any non-trivial threshold. Our result is based solely on
the no-signalling principle, which is necessary for the existence of free
randomness.Comment: 5+7 pages, 2 figures. Updated to match published versio
Recommended from our members
Succession of Bifidobacterium longum strains in response to the changing early-life nutritional environment reveals specific adaptations to distinct dietary substrates
Diet-microbe interactions play a crucial role in infant development and modulation of the early-life microbiota. The genus Bifidobacterium dominates the breast-fed infant gut, with strains of B. longum subsp. longum (B. longum) and B. longum subsp. infantis (B. infantis) particularly prevalent. Although transition from milk to a more diversified diet later in infancy initiates a shift to a more complex microbiome, specific strains of B. longum may persist in individual hosts for prolonged periods of time. Here, we sought to investigate the adaptation of B. longum to the changing infant diet. Genomic characterisation of 75 strains isolated from nine either exclusively breast- or formula-fed (pre-weaning) infants in their first 18 months revealed subspecies- and strain-specific intra-individual genomic diversity with respect to glycosyl hydrolase families and enzymes, which corresponded to different dietary stages. Complementary phenotypic growth studies indicated strain-specific differences in human milk oligosaccharide and plant carbohydrate utilisation profiles of isolates between and within individual infants, while proteomic profiling identified active polysaccharide utilisation loci involved in metabolism of selected carbohydrates. Our results indicate a strong link between infant diet and B. longum subspecies/strain genomic and carbohydrate utilisation diversity, which aligns with a changing nutritional environment: i.e. moving from breast milk to a solid food diet. These data provide additional insights into possible mechanisms responsible for the competitive advantage of this Bifidobacterium species and its long-term persistence in a single host and may contribute to rational development of new dietary therapies for this important developmental window
Recommended from our members
Succession of Bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations
Diet-microbe interactions play a crucial role in modulation of the early life microbiota and infant health. Bifidobacterium dominates the breast-fed infant gut and may persist in individuals during transition from a milk-based to a more diversified diet. Here, we investigated adaptation of B. longum to the changing nutritional environment. Genomic characterisation of 75 strains isolated from nine either exclusively breast- or formula-fed (pre-weaning) infants in their first 18 months revealed subspecies- and strain-specific intra-individual genomic diversity with respect to carbohydrate metabolism, which corresponded to different dietary stages. Complementary phenotypic studies indicated strain-specific differences in utilisation of human milk oligosaccharides and plant carbohydrates, while proteomic profiling identified gene clusters involved in metabolism of selected carbohydrates. Our results indicate a strong link between infant diet and B. longum diversity and provide additional insights into possible competitive advantage mechanisms of this Bifidobacterium species and its persistence in a single host
Color Differences Highlight Concomitant Polymorphism of Chalcones
The meta- and para-nitro isomers of (E)-3ā²-dimethylamino-nitrochalcone (Gm8m and Gm8p) are shown to exhibit concomitant color polymorphism, with Gm8m appearing as yellow (P2_{1}/c) or orange (P1Ģ
) crystals and Gm8p appearing as red (P2_{1}/n) or black (P2_{1}/c) crystals. Each of the polymorphs was characterized optically via UVāvis spectroscopy, and their thermal behavior was characterized via differential scanning calorimetry and low-temperature powder X-ray diffraction. To assess the effect of molecular configuration and crystal packing on the colors of crystals of the different polymorphs, time dependent density functional theory (ĻB97x) calculations were carried out on isolated molecules, dimers, stacks, and small clusters cut from the crystal structures of the four polymorphs. The calculated color comes from several excitations and is affected by conformation and most intermolecular contacts within the crystal, with the color differences between polymorphs mainly being due to the differences in the ĻāĻ stacking. The visual differences between these related polymorphic systems make them particularly useful for studying polymorph behavior such as phase transitions and concomitant polymorph growth
Sea anemones may thrive in a high CO2 world
Increased seawater pCO 2, and in turn 'ocean acidification' (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO 2 gradient at Vulcano, Italy. Both gross photosynthesis (P G) and respiration (R) increased with pCO 2 indicating that the increased growth was, at least in part, fuelled by bottom up (CO 2 stimulation) of metabolism. The increase of P G outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO 2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO 2, which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO 2. Understanding how CO 2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress. Ā© 2012 Blackwell Publishing Ltd
- ā¦