2,709 research outputs found

    Benthic foraminifera show some resilience to ocean acidification in the northern Gulf of California, Mexico.

    Get PDF
    The version on PEARL: Corrected proofs are Articles in Press that contain the authors' corrections. Final citation details, e.g., volume/issue number, publication year and page numbers, still need to be added and the text might change before final publication. Although corrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI , as follows: author(s), article title, journal (year), DOIExtensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74-207m water depth. Living (rose Bengal stained) benthic foraminifera included Nonionella basispinata, Epistominella bradyana and Bulimina marginata. Studies on foraminifera at CO2 vents in the Mediterranean and off Papua New Guinea have shown dramatic long-term effects of acidified seawater. We found living calcareous benthic foraminifera in low pH conditions in the northern Gulf of California, although there was an impoverished species assemblage and evidence of post-mortem test dissolution

    The signalling channel of Central Bank interventions:modelling the Yen/US dollar exchange rate

    Get PDF
    This paper presents a theoretical framework analysing the signalling channel of exchange rate interventions as an informational trigger. We develop an implicit target zone framework with learning in order to model the signalling channel. The theoretical premise of the model is that interventions convey signals that communicate information about the exchange rate objectives of the central bank. The model is used to analyse the impact of Japanese FX interventions during the period 1999--2011 on the yen/US dollar dynamics

    Bodily relations and reciprocity in the art of Sonia Khurana

    No full text
    This article explores the significance of the ‘somatic’ and ‘ontological turn’ in locating the radical politics articulated in the contemporary performance, installation, video and digital art practices of New Delhi-based artist, Sonia Khurana (b. 1968). Since the late 1990s Khurana has fashioned a range of artworks that require new sorts of reciprocal and embodied relations with their viewers. While this line of art practice suggests the need for a primarily philosophical mode of inquiry into an art of the body, such affective relations need to be historicised also in relation to a discursive field of ‘difference’ and public expectations about the artist’s ethnic, gendered and national identity. Thus, this intimate, visceral and emotional field of inter- and intra-action is a novel contribution to recent transdisciplinary perspectives on the gendered, social and sentient body, that in turn prompts a wider debate on the ethics of cultural commentary and art historiography

    Colored Motifs Reveal Computational Building Blocks in the C. elegans Brain

    Get PDF
    Background: Complex networks can often be decomposed into less complex sub-networks whose structures can give hints about the functional organization of the network as a whole. However, these structural motifs can only tell one part of the functional story because in this analysis each node and edge is treated on an equal footing. In real networks, two motifs that are topologically identical but whose nodes perform very different functions will play very different roles in the network. Methodology/Principal Findings: Here, we combine structural information derived from the topology of the neuronal network of the nematode C. elegans with information about the biological function of these nodes, thus coloring nodes by function. We discover that particular colorations of motifs are significantly more abundant in the worm brain than expected by chance, and have particular computational functions that emphasize the feed-forward structure of information processing in the network, while evading feedback loops. Interneurons are strongly over-represented among the common motifs, supporting the notion that these motifs process and transduce the information from the sensor neurons towards the muscles. Some of the most common motifs identified in the search for significant colored motifs play a crucial role in the system of neurons controlling the worm's locomotion. Conclusions/Significance: The analysis of complex networks in terms of colored motifs combines two independent data sets to generate insight about these networks that cannot be obtained with either data set alone. The method is general and should allow a decomposition of any complex networks into its functional (rather than topological) motifs as long as both wiring and functional information is available
    corecore