10,417 research outputs found

    ATLAS Z Excess in Minimal Supersymmetric Standard Model

    Get PDF
    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.Comment: 13 pages, 7 figures; published versio

    Identify error-sensitive patterns by decision tree

    Full text link
    © Springer International Publishing Switzerland 2015. When errors are inevitable during data classification, finding a particular part of the classification model which may be more susceptible to error than others, when compared to finding an Achilles’ heel of the model in a casual way, may help uncover specific error-sensitive value patterns and lead to additional error reduction measures. As an initial phase of the investigation, this study narrows the scope of problem by focusing on decision trees as a pilot model, develops a simple and effective tagging method to digitize individual nodes of a binary decision tree for node-level analysis, to link and track classification statistics for each node in a transparent way, to facilitate the identification and examination of the potentially “weakest” nodes and error-sensitive value patterns in decision trees, to assist cause analysis and enhancement development. This digitization method is not an attempt to re-develop or transform the existing decision tree model, but rather, a pragmatic node ID formulation that crafts numeric values to reflect the tree structure and decision making paths, to expand post-classification analysis to detailed node-level. Initial experiments have shown successful results in locating potentially high-risk attribute and value patterns; this is an encouraging sign to believe this study worth further exploration

    Implications of large dimuon CP asymmetry in B_{d,s} decays on minimal flavor violation with low tan beta

    Full text link
    The D0 collaboration has recently announced evidence for a dimuon CP asymmetry in B_{d,s} decays of order one percent. If confirmed, this asymmetry requires new physics. We argue that for minimally flavor violating (MFV) new physics, and at low tan beta=v_u/v_d, there are only two four-quark operators (Q_{2,3}) that can provide the required CP violating effect. The scale of such new physics must lie below 260 GeV sqrt{tan beta}. The effect is universal in the B_s and B_d systems, leading to S_{psi K}~sin(2beta)-0.15 and S_{psi phi}~0.25. The effects on epsilon_K and on electric dipole moments are negligible. The most plausible mechanism is tree-level scalar exchange. MFV supersymmetry with low tan beta will be excluded. Finally, we explain how a pattern of deviations from the Standard Model predictions for S_{psi phi}, S_{psi K} and epsilon_K can be used to test MFV and, if MFV holds, to probe its structure in detail.Comment: 11 pages. v2: References adde

    CP Violation in Supersymmetry with Effective Minimal Flavour Violation

    Full text link
    We analyze CP violation in supersymmetry with Effective Minimal Flavour Violation, as recently proposed in arXiv:1011.0730. Unlike the case of standard Minimal Flavour Violation, we show that all the phases allowed by the flavour symmetry can be sizable without violating existing Electric Dipole Moment constraints, thus solving the SUSY CP problem. The EDMs at one and two loops are precisely analyzed as well as their correlations with the expected CP asymmetries in B physics.Comment: 22 pages, 7 figures. v2: Discussion in section 2 extended, conclusions unchanged. Matches published versio

    Sensing electric fields using single diamond spins

    Full text link
    The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electron transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/\surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging

    Communications Biophysics

    Get PDF
    Contains reports on five research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-02

    Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar

    Full text link
    The minimal supergravity (mSUGRA or CMSSM) model is an oft-used framework for exhibiting the properties of neutralino (WIMP) cold dark matter (CDM). However, the recent evidence from Atlas and CMS on a light Higgs scalar with mass m_h\simeq 125 GeV highly constrains the superparticle mass spectrum, which in turn constrains the neutralino annihilation mechanisms in the early universe. We find that stau and stop co-annihilation mechanisms -- already highly stressed by the latest Atlas/CMS results on SUSY searches -- are nearly eliminated if indeed the light Higgs scalar has mass m_h\simeq 125 GeV. Furthermore, neutralino annihilation via the A-resonance is essentially ruled out in mSUGRA so that it is exceedingly difficult to generate thermally-produced neutralino-only dark matter at the measured abundance. The remaining possibility lies in the focus-point region which now moves out to m_0\sim 10-20 TeV range due to the required large trilinear soft SUSY breaking term A_0. The remaining HB/FP region is more fine-tuned than before owing to the typically large top squark masses. We present updated direct and indirect detection rates for neutralino dark matter, and show that ton scale noble liquid detectors will either discover mixed higgsino CDM or essentially rule out thermally-produced neutralino-only CDM in the mSUGRA model.Comment: 17 pages including 9 .eps figure

    R.A.Fisher, design theory, and the Indian connection

    Get PDF
    Design Theory, a branch of mathematics, was born out of the experimental statistics research of the population geneticist R. A. Fisher and of Indian mathematical statisticians in the 1930s. The field combines elements of combinatorics, finite projective geometries, Latin squares, and a variety of further mathematical structures, brought together in surprising ways. This essay will present these structures and ideas as well as how the field came together, in itself an interesting story.Comment: 11 pages, 3 figure

    Coherent spinor dynamics in a spin-1 Bose condensate

    Full text link
    Collisions in a thermal gas are perceived as random or incoherent as a consequence of the large numbers of initial and final quantum states accessible to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a degenerate Fermi gas, the phase space accessible to low energy collisions is so restricted that collisions be-come coherent and reversible. Here, we report the observation of coherent spin-changing collisions in a gas of spin-1 bosons. Starting with condensates occupying two spin states, a condensate in the third spin state is coherently and reversibly created by atomic collisions. The observed dynamics are analogous to Josephson oscillations in weakly connected superconductors and represent a type of matter-wave four-wave mixing. The spin-dependent scattering length is determined from these oscillations to be -1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of the system by applying differential phase shifts to the spin states using magnetic fields.Comment: 19 pages, 3 figure
    • …
    corecore