3,525 research outputs found

    Gemini-South + FLAMINGOS Demonstration Science: Near-Infrared Spectroscopy of the z=5.77 Quasar SDSS J083643.85+005453.3

    Full text link
    We report an infrared 1-1.8 micron (J+H-bands), low-resolution (R=450) spectrogram of the highest-redshift radio-loud quasar currently known, SDSS J083643.85+005453.3, obtained during the spectroscopic commissioning run of the FLAMINGOS multi-object, near-infrared spectrograph at the 8m Gemini-South Observatory. These data show broad emission from both CIV 1549 and CIII] 1909, with strengths comparable to lower-redshift quasar composite spectra. The implication is that there is substantial enrichment of the quasar environment, even at times less than a billion years after the Big Bang. The redshift derived from these features is z = 5.774 +/- 0.003, more accurate and slightly lower than the z = 5.82 reported in the discovery paper based on the partially-absorbed Lyman-alpha emission line. The infrared continuum is significantly redder than lower-redshift quasar composites. Fitting the spectrum from 1.0 to 1.7 microns with a power law f(nu) ~ nu^(-alpha), the derived power law index is alpha = 1.55 compared to the average continuum spectral index = 0.44 derived from the first SDSS composite quasar. Assuming an SMC-like extinction curve, we infer a color excess of E(B-V) = 0.09 +/- 0.01 at the quasar redshift. Only approximately 6% of quasars in the optically-selected Sloan Digital Sky Survey show comparable levels of dust reddening.Comment: 10 pages, 1 figure; to appear in the Astrophysical Journal Letter

    Diabetes Insipidus in Mice with a Mutation in Aquaporin-2

    Get PDF
    Congenital nephrogenic diabetes insipidus (NDI) is a disease characterized by failure of the kidney to concentrate urine in response to vasopressin. Human kindreds with nephrogenic diabetes insipidus have been found to harbor mutations in the vasopressin receptor 2 (Avpr2) gene or the vasopressin-sensitive water channel aquaporin-2 (Aqp2) gene. Development of a treatment is rendered difficult due to the lack of a viable animal model. Through forward genetic screening of ethylnitrosourea-mutagenized mice, we report the identification and characterization of a mouse model of NDI, with an F204V mutation in the Aqp2 gene. Unlike previously attempted murine models of NDI, our mice survive to adulthood and more exactly recapitulate the human disorder. Previous in vitro experiments using renal cell lines suggest recessive Aqp2 mutations result in improper trafficking of the mutant water pore. Using these animals, we have directly proven this hypothesis of improper AQP2 translocation as the molecular defect in nephrogenic diabetes insipidus in the intact organism. Additionally, using a renal cell line we show that the mutated protein, AQP2-F204V, is retained in the endoplasmic reticulum and that this abnormal localization can be rescued by wild-type protein. This novel mouse model allows for further mechanistic studies as well as testing of pharmacological and gene therapies for NDI

    Perceptions of trends in Seychelles artisanal trap fisheries: comparing catch monitoring, underwater visual census and fishers' knowledge

    Get PDF
    Fisheries scientists and managers are increasingly engaging with fishers' knowledge (FK) to provide novel information and improve the legitimacy of fisheries governance. Disputes between the perceptions of fishers and scientists can generate conflicts for governance, but can also be a source of new perspectives or understandings. This paper compares artisanal trap fishers' reported current catch rates with landings data and underwater visual census (UVC). Fishers' reports of contemporary 'normal' catch per day tended to be higher than recent median landings records. However, fishers' reports of 'normal' catch per trap were not significantly different from the median CPUE calculated from landings data, and reports of 'good' and 'poor' catch rates were indicative of variability observed in landings data. FK, landings and UVC data all gave different perspectives of trends over a ten-year period. Fishers' perceptions indicated greater declines than statistical models fitted to landings data, while UVC evidence for trends varied between sites and according to the fish assemblage considered. Divergence in trend perceptions may have resulted from differences in the spatial, temporal or taxonomic focus of each dataset. Fishers may have experienced and understood behavioural changes and increased fishing power, which may have obscured declines from landings data. Various psychological factors affect memory and recall, and may have affected these memory-based estimates of trends, while different assumptions underlying the analysis of both interview data and conventional scientific data could also have led to qualitatively different trend perceptions. Differing perspectives from these three data sources illustrate both the potential for 'cognitive conflicts' between stakeholders who do not rely on the same data sources, as well as the importance of multiple information sources to understand dynamics of fisheries. Collaborative investigation of such divergence may facilitate learning and improve fisheries governance

    COVID-19 during the index hospital admission confers a 'double-hit' effect on hip fracture patients and is associated with a two-fold increase in 1-year mortality risk

    Get PDF
    PURPOSE: The aims were to: (1) determine 1‐year mortality rates for hip fracture patients during the first UK COVID‐19 wave, and (2) assess mortality risk associated with COVID‐19. METHODS: A nationwide multicentre cohort study was conducted of all patients presenting to 17 hospitals in March‐April 2020. Follow‐up data were collected one year after initial hip fracture (‘index’) admission, including: COVID‐19 status, readmissions, mortality, and cause of death. RESULTS: Data were available for 788/833 (94.6%) patients. One‐year mortality was 242/788 (30.7%), and the prevalence of COVID‐19 within 365 days of admission was 142/788 (18.0%). One‐year mortality was higher for patients with COVID‐19 (46.5% vs. 27.2%; p < 0.001), and highest for those COVID‐positive during index admission versus after discharge (54.7% vs. 39.7%; p = 0.025). Anytime COVID‐19 was independently associated with 50% increased mortality risk within a year of injury (HR 1.50, p = 0.006); adjusted mortality risk doubled (HR 2.03, p < 0.001) for patients COVID‐positive during index admission. No independent association was observed between mortality risk and COVID‐19 diagnosed following discharge (HR 1.16, p = 0.462). Most deaths (56/66; 84.8%) in COVID‐positive patients occurred within 30 days of COVID‐19 diagnosis (median 11.0 days). Most cases diagnosed following discharge from the admission hospital occurred in downstream hospitals. CONCLUSION: Almost half the patients that had COVID‐19 within 365 days of fracture had died within one year of injury versus 27.2% of COVID‐negative patients. Only COVID‐19 diagnosed during the index admission was associated independently with an increased likelihood of death, indicating that infection during this time may represent a ‘double‐hit’ insult, and most COVID‐related deaths occurred within 30 days of diagnosis

    Sleep EEG in young people with 22q11.2 deletion syndrome:a cross-sectional study of slow-waves, spindles and correlations with memory and neurodevelopmental symptoms

    Get PDF
    Background:: Young people living with 22q11.2 Deletion Syndrome (22q11.2DS) are at increased risk of schizophrenia, intellectual disability, attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In common with these conditions, 22q11.2DS is also associated with sleep problems. We investigated whether abnormal sleep or sleep-dependent network activity in 22q11.2DS reflects convergent, early signatures of neural circuit disruption also evident in associated neurodevelopmental conditions. Methods:: In a cross-sectional design, we recorded high-density sleep EEG in young people (6–20 years) with 22q11.2DS (n=28) and their unaffected siblings (n=17), quantifying associations between sleep architecture, EEG oscillations (spindles and slow waves) and psychiatric symptoms. We also measured performance on a memory task before and after sleep. Results:: 22q11.2DS was associated with significant alterations in sleep architecture, including a greater proportion of N3 sleep and lower proportions of N1 and REM sleep than in siblings. During sleep, deletion carriers showed broadband increases in EEG power with increased slow-wave and spindle amplitudes, increased spindle frequency and density, and stronger coupling between spindles and slow-waves. Spindle and slow-wave amplitudes correlated positively with overnight memory in controls, but negatively in 22q11.2DS. Mediation analyses indicated that genotype effects on anxiety, ADHD and ASD were partially mediated by sleep EEG measures. Conclusions:: This study provides a detailed description of sleep neurophysiology in 22q11.2DS, highlighting alterations in EEG signatures of sleep which have been previously linked to neurodevelopment, some of which were associated with psychiatric symptoms. Sleep EEG features may therefore reflect delayed or compromised neurodevelopmental processes in 22q11.2DS, which could inform our understanding of the neurobiology of this condition and be biomarkers for neuropsychiatric disorders. Funding:: This research was funded by a Lilly Innovation Fellowship Award (UB), the National Institute of Mental Health (NIMH 5UO1MH101724; MvdB), a Wellcome Trust Institutional Strategic Support Fund (ISSF) award (MvdB), the Waterloo Foundation (918-1234; MvdB), the Baily Thomas Charitable Fund (2315/1; MvdB), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment (IMAGINE) (MR/L011166/1; JH, MvdB and MO), MRC grant Intellectual Disability and Mental Health: Assessing Genomic Impact on Neurodevelopment 2 (IMAGINE-2) (MR/T033045/1; MvdB, JH and MO); Wellcome Trust Strategic Award ‘Defining Endophenotypes From Integrated Neurosciences’ Wellcome Trust (100202/Z/12/Z MO, JH). NAD was supported by a National Institute for Health Research Academic Clinical Fellowship in Mental Health and MWJ by a Wellcome Trust Senior Research Fellowship in Basic Biomedical Science (202810/Z/16/Z). CE and HAM were supported by Medical Research Council Doctoral Training Grants (C.B.E. 1644194, H.A.M MR/K501347/1). HMM and UB were employed by Eli Lilly & Co during the study; HMM is currently an employee of Boehringer Ingelheim Pharma GmbH & Co KG. The views and opinions expressed are those of the author(s), and not necessarily those of the NHS, the NIHR or the Department of Health funders

    Luminescent LaF₃:Ce-doped Organically Modified Nanoporous Silica Xerogels

    Get PDF
    Organically modified silica compounds (ORMOSILs) were synthesized by a sol-gel method from amine-functionalized 3-aminopropyl triethoxylsilane and tetramethylorthosilicate and were doped in situ with LaF3:Ce nanoparticles, which in turn were prepared either in water or in ethanol. Doped ORMOSILs display strong photoluminescence either by UV or X-ray excitation and maintain good transparency up to a loading level of 15.66% w/w. The TEM observations demonstrate that ORMOSILs remain nanoporous with pore diameters in the 5-10 nm range. LaF3:Ce nanoparticles doped into the ORMOSILs are rod-like, 5 nm in diameter and 10-15 nm in length. Compression testing indicates that the nanocomposites have very good strength, without significant lateral dilatation and buckling under quasi-static compression. LaF3:Ce nanoparticle-doped ORMOSILs have potential for applications in radiation detection and solid state lighting

    A study of patent thickets

    Get PDF
    Report analysing whether entry of UK enterprises into patenting in a technology area is affected by patent thickets in the technology area
    • 

    corecore