520 research outputs found

    Geology of the Llanidloes district : British Geological Survey Sheet 164

    Get PDF
    This Sheet Explanation provides a summary of the geology of the district covered by Geological 1:50 000 Series Map Sheet 164 (Llanidloes), published in 2010 as a Bedrock and Superficial Deposits edition. The district mostly lies within the county of Powys, but includes small parts of Ceredigion in the extreme west and south-west. Much of the western part of the district is occupied by the deeply dissected uplands of the Cambrian Mountains, a designated Area of Outstanding Natural Beauty. In this area the land rises to 740 m on the flanks of Plynlimon (Pumlumon Fawr), the highest summit in the range. It falls away towards the eastern part of the district into rolling countryside that includes the important catchment of the River Severn (Afon Hafren) and its tributaries, the largest of which are the rivers Carno, Trannon, Cerist, Clywedog and Dulas. A major reservoir (Llyn Clywedog) occupies the upper reaches of the Clywedog valley, its purpose being to regulate river discharge and groundwater levels within the catchment. The south-western part of the district is drained by the River Wye (Afon Gwy) and its tributaries, that flow south-eastwards via Llangurig. The sources of both the Severn and Wye are situated on the eastern flanks of Plynlimon within the western part of the district. The town of Llanidloes is the main centre of population, with smaller settlements at Llangurig, Carno, Trefeglwys, Caersws and Staylittle; the Newtown conurbation impinges on the eastern part of the district. Much of the district is given over to beef and dairy farming, although sheep are reared in the remote upland areas in the west and extensive forestry plantations have been developed in places. The Ordovician and Silurian rocks of the district have been exploited locally, in the past, as a source of building material and, recently, commercial quantities of sandstone aggregate have been excavated at Penstrowed Quarry [SO 0680 9100]. The district includes part of the Central Wales Mining Field from which substantial volumes of lead and zinc ore were extracted during the 19th and early 20th centuries. A number of former mine sites are still visible, notably along the Van, Nant-y-ricket, Dylife, Dyfngwm and Llanerchyraur lodes (Jones, 1922[1]; IGS, 1974), and the historic Bryntail Mine, below the Clywedog Dam has been restored as a site of industrial archaeological interest. The district is underlain by a succession of Late Ordovician (Ashgill) to Silurian sedimentary rocks, over 5 km thick, deposited between 450 and 420 million years ago in the Early Palaeozoic Welsh Basin (Figure P930911). The basin developed on a fragment of the ancient supercontinent of Gondwana, known as Eastern Avalonia (e.g. Pickering et al., 1988[2]), that drifted northwards to collide with the continents of Baltica and Laurentia during the Late Ordovician and Silurian (Soper and Hutton, 1984[3]; Soper and Woodcock, 1990[4]; Woodcock and Strachan, 2000[5]). To the east and the south of the basin lay the Midland Platform, a relatively stable shallow marine shelf that was subject to periodic emergence. The basinal sediments are predominantly deep marine turbiditic facies that were introduced into the district by density currents from southerly, south-easterly and north-westerly quadrants. Coeval shallower-water ‘shelfal’ sediments were deposited north and east of the district, and locally impinge on its northern margins. Thickness variations within the major sedimentary units suggest that, at times, syndepositional fault movements were an important control on their distribution. During late Silurian (Ludlow) times, shallowing of the basin occurred, and sandstones, variably interpreted as a turbiditic (Cave and Hains, 2001[6]) or storm-generated facies (Tyler and Woodcock, 1987[7]), were laid down over the eastern part of the district and adjacent areas. The shallowing was a result of tectonic reconfiguration of the basin, a precursor to the late Caledonian (Acadian) Orogeny that affected the region during the late Early Devonian, around 400 million years ag

    Ecosystem Capacity for Microbial Biodegradation of Munitions Compounds and Phenanthrene in Three Coastal Waterways in North Carolina, United States

    Get PDF
    Munitions compounds (i.e., 2,4,6-trinitrotoluene (TNT), octahy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocin (HMX), and hexadydro-1,3,5-trinitro-1,3,5-triazin (RDX), also called energetics) were originally believed to be recalcitrant to microbial biodegradation based on historical groundwater chemical attenuation data and laboratory culture work. More recently, it has been established that natural bacterial assemblages in coastal waters and sediment can rapidly metabolize these organic nitrogen sources and even incorporate their carbon and nitrogen into bacterial biomass. Here, we report on the capacity of natural microbial assemblages in three coastal North Carolina (United States) estuaries to metabolize energetics and phenanthrene (PHE), a proxy for terrestrial aromatic compounds. Microbial assemblages generally had the highest ecosystem capacity (mass of the compound mineralized per average estuarine residence time) for HMX (21-5463 kg) RDX (1.4-5821 kg) PHE (0.29-660 kg) TNT (0.25-451 kg). Increasing antecedent precipitation tended to decrease the ecosystem capacity to mineralize TNT in the Newport River Estuary, and PHE and TNT mineralization were often highest with increasing salinity. There was some evidence from the New River Estuary that increased N-demand (due to a phytoplankton bloom) is associated with increased energetic mineralization rates. Using this type of analysis to determine the ecosystem capacity to metabolize energetics can explain why these compounds are rarely detected in seawater and marine sediment, despite the known presence of unexploded ordnance or recent use in military training exercises. Overall, measuring the ecosystem capacity may help predict the effects of climate change (warming and altered precipitation patterns) and other perturbations on exotic compound fate and transport within ecosystems and provide critical information for managers and decision-makers to develop management strategies based on these changes

    Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity

    Get PDF
    The Neuse River Estuary (North Carolina, USA) is a valuable ecosystem that has been affected by the expansion of agricultural and urban watershed activities over the last several decades. Eutrophication, as a consequence of enhanced anthropogenic nutrient loadings, has promoted high phytoplankton biomass, hypoxia, and fish kills. This study compares and contrasts three models to better understand how nutrient loading and other environmental factors control phytoplankton biomass, as chl-a, over time. The first model is purely statistical, while the second model mechanistically simulates both chl-a and nitrogen dynamics, and the third additionally simulates phosphorus. The models are calibrated to a multi-decadal dataset (1997–2018) within a Bayesian framework, which systematically incorporates prior information and accounts for uncertainties. All three models explain over one third of log-transformed chl-a variability, with the mechanistic models additionally explaining the majority of the variability in bioavailable nutrients (R2 > 0.5). By disentangling the influences of riverine nutrient concentrations, flows, and loadings on estuary productivity we find that concentration reductions, rather than total loading reductions, are the key to controlling estuary chl-a levels. The third model indicates that the estuary, even in its upstream portion, is rarely phosphorus limited, and will continue to be mostly nitrogen limited even under a 30% phosphorus reduction scenario. This model also predicts that a 10% change in nitrogen loading (flow held constant) will produce an approximate 4.3% change in estuary chl-a concentration, while the statistical model suggests a larger (10%) effect. Overall, by including a more detailed representation of environmental factors controlling algal growth, the mechanistic models generate chl-a forecasts with less uncertainty across a range of nutrient loading scenarios. Methodologically, this study advances the use of Bayesian methods for modeling the eutrophication dynamics of an estuarine system over a multi-decadal period

    Riverine Discharge and Phytoplankton Biomass Control Dissolved and Particulate Organic Matter Dynamics over Spatial and Temporal Scales in the Neuse River Estuary, North Carolina

    Get PDF
    Estuaries function as important transporters, transformers, and producers of organic matter (OM). Along the freshwater to saltwater gradient, the composition of OM is influenced by physical and biogeochemical processes that change spatially and temporally, making it difficult to constrain OM in these ecosystems. In addition, many of the environmental parameters (temperature, precipitation, riverine discharge) controlling OM are expected to change due to climate change. To better understand the environmental drivers of OM quantity (concentration) and quality (absorbance, fluorescence), we assessed both dissolved OM (DOM) and particulate OM (POM) spatially, along the freshwater to saltwater gradient and temporally, for a full year. We found seasonal differences in salinity throughout the estuary due to elevated riverine discharge during the late fall to early spring, with corresponding changes to OM quantity and quality. Using redundancy analysis, we found DOM covaried with salinity (adjusted r2 = 0.35, 0.41 for surface and bottom), indicating terrestrial sources of DOM in riverine discharge were the dominant DOM sources throughout the estuary, while POM covaried with environmental indictors of terrestrial sources (turbidity, adjusted r2 = 0.16, 0.23 for surface and bottom) as well as phytoplankton biomass (chlorophyll-a, adjusted r2 = 0.25, 0.14 for surface and bottom). Responses in OM quantity and quality observed during the period of elevated discharge were similar to studies assessing OM quality following extreme storm events suggesting that regional changes in precipitation, as predicted by climate change, will be as important in changing the estuarine OM pool as episodic storm events in the future

    Long-term nutrient trends and harmful cyanobacterial bloom potential in hypertrophic Lake Taihu, China

    Get PDF
    Rapid economic development in China’s Lake Taihu basin during the past four decades has accelerated nitrogen (N) and phosphorus (P) loadings to the lake. This has caused a shift from mesotrophic to hypertrophic conditions, symptomized by harmful cyanobacterial blooms (CyanoHABs). The relationships between phytoplankton biomass as chlorophyll a (Chla) and nutrients as total nitrogen (TN) and total phosphorus (TP) were analyzed using historical data from 1992 to 2012 to link the response of CyanoHAB potential to long-term nutrient changes. Over the twenty year study period, annual mean Chla showed significantly positive correlations with both annual mean TN and TP (P 20 μg L−1) was compared to TN and TP to determine nutrient-bloom thresholds. A decline in bloom risk is expected if TN remains below 1.0 mg L−1 and TP below 0.08 mg L−1

    Transcription factor mediated control of anthocyanin biosynthesis in vegetative tissues

    Get PDF
    Plants accumulate secondary metabolites to adapt to environmental conditions. These compounds, here exemplified by the purple-colored anthocyanins, are accumulated upon high temperatures, UV-light, drought, and nutrient deficiencies, and may contribute to tolerance to these stresses. Producing compounds is often part of a more broad response of the plant to changes in the environment. Here we investigate how a transcription-factor-mediated program for controlling anthocyanin biosynthesis also has effects on formation of specialized cell structures and changes in the plant root architecture. A systems biology approach was developed in tomato (Solanum lycopersicum) for coordinated induction of biosynthesis of anthocyanins, in a tissue- and development-independent manner. A transcription factor couple from Antirrhinum that is known to control anthocyanin biosynthesis was introduced in tomato under control of a dexamethasone-inducible promoter. By application of dexamethasone, anthocyanin formation was induced within 24 h in vegetative tissues and in undifferentiated cells. Profiles of metabolites and gene expression were analyzed in several tomato tissues. Changes in concentration of anthocyanins and other phenolic compounds were observed in all tested tissues, accompanied by induction of the biosynthetic pathways leading from Glc to anthocyanins. A number of pathways that are not known to be involved in anthocyanin biosynthesis were observed to be regulated. Anthocyanin-producing plants displayed profound physiological and architectural changes, depending on the tissue, including root branching, root epithelial cell morphology, seed germination, and leaf conductance. The inducible anthocyanin-production system reveals a range of phenomena that accompanies anthocyanin biosynthesis in tomato, including adaptions of the plants architecture and physiology

    Model Building with Gauge-Yukawa Unification

    Full text link
    In supersymmetric theories with extra dimensions, the Higgs and matter fields can be part of the gauge multiplet, so that the Yukawa interactions can arise from the gauge interactions. This leads to the possibility of gauge-Yukawa coupling unification, g_i=y_f, in the effective four dimensional theory after the initial gauge symmetry and the supersymmetry are broken upon orbifold compactification. We consider gauge-Yukawa unified models based on a variety of four dimensional symmetries, including SO(10), SU(5), Pati-Salam symmetry, trinification, and the Standard Model. Only in the case of Pati-Salam and the Standard Model symmetry, we do obtain gauge-Yukawa unification. Partial gauge-Yukawa unification is also briefly discussed.Comment: 23 page

    Extreme weather events modulate processing and export of dissolved organic carbon in the Neuse River Estuary, NC

    Get PDF
    As the interface between riverine and coastal systems, estuaries play a key role in receiving, transporting, and processing terrestrial organic carbon prior to export to downstream coastal systems. Estuaries can switch from terrestrial organic carbon reactors under low river flow to pipelines under high flow, but it remains unclear how estuarine terrestrial organic carbon processing responds to the full spectrum of discharge conditions, which are bracketed by these high and low discharge events. The amount of terrestrial dissolved organic carbon and colored dissolved organic matter imported, processed, and exported was assessed for riverine discharge events spanning from the 4th to 99th flow quantiles in the Neuse River Estuary, North Carolina, USA using spatially and temporally (July 2015–December 2016) resolved measurements. The extent of dissolved organic matter processing in the estuary under various flow conditions was estimated using a non-steady state box model to calculate estuary-wide terrestrial dissolved organic carbon and colored dissolved organic matter source & sink terms. Under mid-range riverine discharge conditions (4th to 89th flow quantiles), the Neuse River Estuary was a sink for terrestrial dissolved organic carbon, retaining and/or processing (i.e., flocculation; photochemical and microbial degradation) on average ∼29% of terrestrial dissolved organic carbon. Following floods due to extreme precipitation events (99th flow quantile), however, over 99% of the terrestrial dissolved organic carbon loaded from the riverine end-member was exported directly to the downstream coastal system. Following such extreme weather events, the estuary acts as a pipeline for direct export of terrestrial dissolved organic carbon, drastically altering the amount and quality of dissolved organic carbon loaded to downstream coastal systems. This has important implications under future climate scenarios, where extreme weather events are expected to increase

    A Way to Reopen the Window for Electroweak Baryogenesis

    Get PDF
    We reanalyse the sphaleron bound of electroweak baryogenesis when allowing deviations to the Friedmann equation. These modifications are well motivated in the context of brane cosmology where they appear without being in conflict with major experimental constraints on four-dimensional gravity. While suppressed at the time of nucleosynthesis, these corrections can dominate at the time of the electroweak phase transition and in certain cases provide the amount of expansion needed to freeze out the baryon asymmetry without requiring a strongly first order phase transition. The sphaleron bound is substantially weakened and can even disappear so that the constraints on the higgs and stop masses do not apply anymore. Such modification of cosmology at early times therefore reopens the parameter space allowing electroweak baryogenesis which had been reduced substantially given the new bound on the higgs mass imposed by LEP. In contrast with previous attempts to turn around the sphaleron bound using alternative cosmologies, we are still considering that the electroweak phase transition takes place in a radiation dominated universe. The universe is expanding fast because of the modification of the Friedmann equation itself without the need for a scalar field and therefore evading the problem of the decay of this scalar field after the completion of the phase transition and the risk that its release of entropy dilutes the baryon asymmetry produced at the transition.Comment: 19 pages, 3 figures; v2: minor changes, remark added at end of section 5 and in caption of figure 1; v3: references added, version to be publishe
    • …
    corecore