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Abstract 

The Neuse River Estuary (North Carolina, USA) is a valuable ecosystem that has been 

affected by the expansion of agricultural and urban watershed activities over the last several 

decades. Eutrophication, as a consequence of enhanced anthropogenic nutrient loadings, has 

promoted high phytoplankton biomass, hypoxia, and fish kills. This study compares and contrasts 

three models to better understand how nutrient loading and other environmental factors control 

phytoplankton biomass, as chl-a, over time. The first model is purely statistical, while the second 

model mechanistically simulates both chl-a and nitrogen dynamics, and the third additionally 

simulates phosphorus. The models are calibrated to a multi-decadal dataset (1997-2018) within a 

Bayesian framework, which systematically incorporates prior information and accounts for 

uncertainties. All three models explain over one third of log-transformed chl-a variability, with the 

mechanistic models additionally explaining the majority of the variability in bioavailable nutrients 

(R2 > 0.5). By disentangling the influences of riverine nutrient concentrations, flows, and loadings 

on estuary productivity we find that concentration reductions, rather than total loading reductions, 

are the key to controlling estuary chl-a levels. The third model indicates that the estuary, even in 

its upstream portion, is rarely phosphorus limited, and will continue to be mostly nitrogen limited 

even under a 30% phosphorus reduction scenario. This model also predicts that a 10% change in 

nitrogen loading (flow held constant) will produce an approximate 4.3% change in estuary chl-a 

concentration, while the statistical model suggests a larger (10%) effect. Overall, by including a 

more detailed representation of environmental factors controlling algal growth, the mechanistic 

models generate chl-a forecasts with less uncertainty across a range of nutrient loading scenarios. 

Methodologically, this study advances the use of Bayesian methods for modeling daily 

eutrophication dynamics of an estuarine system over a multi-decadal period. 
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1 Introduction 

Estuarine systems are productive environments that are vital to coastal communities, 

serving as habitats for wildlife, supporting commercial fisheries, and providing recreational 

opportunities. However, these systems can be degraded by eutrophication, which is defined as an 

increase in the supply of organic matter to an ecosystem (Nixon, 1995). Eutrophication is 

influenced by a combination of factors, including shifts in hydrologic regime that affect transport 

of nutrients and organic matter, and increases in nutrient loadings resulting from over-fertilization 

of crops and human and livestock waste (Bricker et al., 1999; de Jonge et al., 2002; Rabalais et al., 

2009). Consequently, elevated levels of nutrients in coastal and estuarine waters enhance 

phytoplankton production, often resulting in harmful algal blooms (Heisler et al., 2008; Paerl et 

al., 2018b) and expansion of hypoxic “dead” zones (Rabalais et al., 2010).  

The Neuse River Estuary (NRE), located in eastern North Carolina (NC), USA, has 

experienced severe problems including algal blooms, hypoxia, and consequently finfish and 

shellfish kills (Borsuk et al., 2003; Eby and Crowder, 2002; Lung and Paerl, 1988; Paerl et al., 

1995; Selberg et al., 2001). Excessive nutrient loadings are considered the main cause of these 

water quality issues (Paerl et al., 1998; Rudek et al., 1991). While riverine total phosphorus (TP) 

concentrations substantially decreased following management actions in the 1980s, nitrogen 

loadings increased (Borsuk et al., 2001). Beginning in the mid-1990s, extensive monitoring and 

modeling was conducted to support development of a Total Maximum Daily Load (TMDL), 
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ultimately requiring a 30% reduction in total nitrogen (TN) delivered to the NRE (NCDWQ, 2001). 

A decade after TMDL completion, point sources of nitrogen have decreased, but agricultural non-

point sources remain problematic (Strickling and Obenour, 2018) and organic nitrogen 

concentrations have increased (Lebo et al., 2012). As a result, chlorophyll a (chl-a) concentrations 

exceed the State criterion of 40 µg/L for more than the allowed 10% of collected samples (Deamer, 

2009), and hypoxia and fish kills remain common in the estuary (Katin et al., 2019; Paerl et al., 

2018a; Rachels and Ricks, 2018). 

The modeling studies developed for the TMDL possessed some limitations, which made 

them suboptimal for predicting system responses under changing conditions (Stow et al., 2003). 

The mechanistic models lacked comprehensive uncertainty quantification (Bowen and 

Hieronymus, 2003; Wool et al., 2003), while a more empirical model did not explicitly represent 

several biophysical processes (Borsuk et al., 2003). At the same time, we note that one of these 

studies indicated that the 30% loading reduction suggested by the TMDL would not achieve 

compliance with the NC chl-a criterion (Borsuk et al., 2003, 2002). Additionally, while existing 

research recognizes the critical role of riverine discharge in controlling chl-a, affecting both 

residence times and nutrient delivery in the NRE, multiple studies showed a weak empirical 

relationship between riverine nutrients and chl-a concentration (Borsuk et al., 2004; Peierls et al., 

2012). Given these considerations, new modeling approaches leveraging multiple decades of 

monitoring data are needed to refine our understanding of how the system will respond to changes 

in nutrient loading.  

The Bayesian modeling framework is recognized as an important tool for improving our 

capacity to predict and manage eutrophication in aquatic systems (Arhonditsis et al., 2008; Parslow 

et al., 2013). It allows for updating prior knowledge about model parameters given available data 
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and obtaining probabilistic predictions (Gelman et al., 2013; Kruschke, 2015). Recent 

enhancements in computing power have made it possible to calibrate increasingly complex 

mechanistic models within a Bayesian framework (Malve et al., 2007; Ramin et al., 2011). 

However, recent Bayesian phytoplankton modeling efforts usually have limited spatio-temporal 

scope and resolution. Spatially, systems are typically represented as a single mixed reactor, e.g. 

lake or bay, without accounting for longitudinal variability (Arhonditsis et al., 2007; Del Giudice 

et al., 2021; Fiechter et al., 2013). Temporally, such models are normally calibrated to a small 

number of years (Yang et al., 2016), and/or use relatively large (e.g., monthly) time steps (Li et 

al., 2015).  

In this study, we develop a process-based eutrophication model that simulates chl-a and 

nutrient dynamics at a daily time scale over multiple decades. We compare and contrast this 

process-based model with a statistical piecewise regression model inspired by previous studies of 

the estuary (Borsuk et al., 2004; Peierls et al., 2012). Both types of models are calibrated to an 

extensive multi-decadal dataset within a Bayesian framework and produce probabilistic parameter 

estimates and predictions. These models are used to enhance our understanding of system 

dynamics. Specifically, we: (1) assess the relative importance of riverine flow, nutrient loading, 

and concentration in determining estuary production along a longitudinal gradient, 

(2) quantitatively evaluate the roles of nitrogen, phosphorus, light, and temperature in controlling 

seasonal patterns in algal abundance, and (3) assess the changes in phytoplankton biomass and 

probability of meeting NC chl-a criteria under various nutrient loading reduction scenarios. 
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2 Methods 

We developed three eutrophication models to predict algal dynamics for the study site. 

Model 1 is a purely statistical model (Bayesian piecewise regression) and Models 2 and 3 are 

mechanistic (process-based) models with varying nutrient considerations. In the following 

subsections, data sources and model segmentations are first specified, including boundary 

conditions for Models 2 and 3. Then, the deterministic form of each model is specified along with 

the Bayesian parameter estimation procedure, which is implemented in R (R Core Team, 2019). 

Finally, model performance assessment and loading scenarios are described.  

2.1 Data and estuary segmentation 

Model inputs and boundary conditions were estimated using data obtained from several 

programs and institutions. Measurements of nutrients, chl-a, salinity, temperature, and light 

extinction spanning almost 22 years (January 1, 1997 – September 29, 2018) were collected 

approximately biweekly (twice per month) along the NRE by the Modeling and Monitoring 

Program (ModMon, 2019). Neuse River discharge data for the period of interest were retrieved 

from United States Geographical Survey station 02091814 at Fort Barnwell (USGS, 2019), which 

is located 35 km upstream of the study area, while meteorological data were obtained from a 

weather station (KNKT) through the North Carolina Climate Office (NCCO, 2019) (Fig. 1). 

Discharge (i.e., flow) was corrected by using the ratio of the total estuary watershed to the Fort 

Barnwell watershed (1.18) to account for ungauged flow (Bales and Robbins, 1999). Daily riverine 

nitrogen, phosphorus, and chl-a concentrations were estimated using WRTDS (Hirsch and De 

Cicco, 2015) based on water quality data from ModMon station “0”, located 12 km upstream of 

the upper model boundary. Daily water temperatures were estimated based on regressions with air 
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temperature, as in Katin et al. (Katin et al., 2019). The NRE was segmented longitudinally (Fig. 1, 

Table S1), similar to previous studies (Borsuk et al., 2002; Stow et al., 2003). For each sampling 

date, segment concentrations were determined by averaging the values from the two stations in 

each segment. 

 

Fig. 1 Map of the Neuse Estuary study area, including the three modeled segments.  

2.2 Piecewise regression 

Piecewise regression (Model 1) was used to predict phytoplankton, expressed as chl-

a (μg/L), as a function of riverine discharge, TN concentration, and temperature. Such a regression 

for the NRE was originally proposed by Borsuk et al. (2004), and we compare it to the more 

mechanistic models (Section 2.3). The relation of chl-a to discharge was addressed by a piecewise 

linear relationship (Faraway, 2015) with a breakpoint identified based on the magnitude of the 

flow (Paerl et al., 2014; Peierls et al., 2012). The response variable (chl-a) was log-transformed to 
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meet the assumption of the linear regression for normality of residuals. Flow was also log-

transformed, though temperature and TN were left untransformed (Borsuk et al., 2004). Different 

averaging periods (1, 2, 10, 30, 60 d) for each predictor variable were tested based on predictive 

performance. The model intercept and coefficients for discharge and TN were allowed to vary 

hierarchically by segment (Gelman and Hill, 2007), while the temperature parameter was held 

constant across segments (based on preliminary analysis and to avoid over-fitting). Model 1 had 

the following form:  

ln (𝑎𝑎𝑖𝑖) =  β0,𝑖𝑖 + β𝑄𝑄,𝑙𝑙,𝑖𝑖 ∙ ln(𝑄𝑄) + β𝑄𝑄,ℎ,𝑖𝑖 ∙ (ln(𝑄𝑄) − 𝑏𝑏𝑝𝑝𝑖𝑖) ∙ 𝑑𝑑 + β𝑇𝑇𝑇𝑇,𝑖𝑖 ∙ 𝑇𝑇𝑇𝑇 + β𝑇𝑇 ∙ 𝑇𝑇 + ε𝑎𝑎 (1) 

where i represents model segments 1, 2, and 3 (upper, middle, and bend, respectively), ai is chl-a 

concentration (μg/L), Q (m3/d) is 2-day average river flow, TN (μg/L) is 10-day average riverine 

TN concentration, T (oC) is water temperature. The coefficient β0 (ln(μg/L)) is the intercept; 

βQ,l and βQ,h (ln(μg/L)/ln(m3/d)) are coefficients for ln(Q) before and after breakpoint, respectively; 

βTN (ln(μg/L)/(μg/L)) is the coefficient for TN; and βT (ln(μg/L)/oC) is the coefficient for T. In 

addition, bp (ln(m3/d)) is the breakpoint and d is a binary variable associated with the breakpoint 

(d = 1, if ln(Q) > bp, otherwise d = 0). Finally, εa is the residual error, which is normally distributed 

on the ln scale. 

2.3 Mechanistic models 

Phytoplankton dynamics were represented by a parsimonious process-based biochemical 

model, where each segment was defined as a well-mixed reactor (Fig. 2). Model 2 included chl-a, 

non-algal organic matter (dissolved and particulate), and dissolved inorganic nitrogen (DIN) mass 

balances, while Model 3 additionally considered orthophosphate (OP). All mass balances were 



9 
 

represented via differential equations that were numerically solved using the LSODA algorithm 

(Soetaert et al., 2010) implemented via the ‘odin’ package in R (FitzJohn, 2019).  

 

Fig. 2 Schematic representation of Model 3 as three longitudinal segments (upper, middle, and 

bend). Rubricated model parameters were calibrated within the Bayesian framework (Section 2.4). 

Symbols are described in the text and Table 1. 

Chlorophyll-a concentration increases by means of photosynthetic growth associated with 

consumption of bioavailable nutrients, while chl-a decreases due to phytoplankton mortality. The 

differential equation for chl-a had the following form: 

𝑑𝑑𝑎𝑎𝑖𝑖
𝑑𝑑𝑑𝑑

= (𝑎𝑎𝑖𝑖−1 − 𝑎𝑎𝑖𝑖) ∙
𝑄𝑄
𝑉𝑉𝑖𝑖

+ 𝑘𝑘𝑔𝑔 ∙ 𝑎𝑎𝑖𝑖 ∙ ϕ𝑙𝑙,𝑖𝑖 ∙ ϕ𝑇𝑇,𝑖𝑖 ∙ θ𝑔𝑔𝑇𝑇−20 − 𝑘𝑘𝑟𝑟 ∙ 𝑎𝑎𝑖𝑖 ∙ θ𝑟𝑟𝑇𝑇−20 −
𝐷𝐷𝑖𝑖−1:𝑖𝑖
′

𝑉𝑉𝑖𝑖

∙ (𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑖𝑖−1) +
𝐷𝐷𝑖𝑖:𝑖𝑖+1′

𝑉𝑉𝑖𝑖
∙ (𝑎𝑎𝑖𝑖+1 − 𝑎𝑎𝑖𝑖) 

(2) 
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where Vi (m3) is volume (of segment i), Q (m3/d) is flow, kg (d-1) is the maximum phytoplankton 

growth rate (at 20oC), kr (d-1) is the phytoplankton loss rate due to combined effect of respiration, 

excretion, and grazing. θg, and θr are temperature (T) adjustment parameters for kg and 

kr, respectively, and ϕN and ϕl are nutrient and light limitation factors described below. Parameter 

D′ (m3/d) is a bulk longitudinal dispersion coefficient (Chapra, 2008) estimated as in Katin et 

al. (2019).  

Non-algal organic matter (detritus and zooplankton) in units of nitrogen (z, μg/L) increases 

due to phytoplankton mortality, and it decreases via mineralization or deposition to the sediment 

layer:  

𝑑𝑑𝑧𝑧𝑖𝑖
𝑑𝑑𝑑𝑑

= (𝑧𝑧𝑖𝑖−1 − 𝑧𝑧𝑖𝑖) ∙
𝑄𝑄
𝑉𝑉𝑖𝑖

+ 𝑟𝑟𝑛𝑛 ∙ 𝑘𝑘𝑟𝑟 ∙ θ𝑟𝑟𝑇𝑇−20 ∙ 𝑎𝑎𝑖𝑖 −
ν𝑠𝑠
ℎ𝑖𝑖
∙ 𝑧𝑧𝑖𝑖 − 𝑘𝑘𝑚𝑚 ∙ 𝑧𝑧𝑖𝑖 ∙ θ𝑚𝑚𝑇𝑇−20 −

𝐷𝐷𝑖𝑖−1:𝑖𝑖
′

𝑉𝑉𝑖𝑖

∙ (𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑖𝑖−1) +
𝐷𝐷𝑖𝑖:𝑖𝑖+1′

𝑉𝑉𝑖𝑖
∙ (𝑧𝑧𝑖𝑖+1 − 𝑧𝑧𝑖𝑖) 

𝑎𝑎

(3) 

where h (m) is depth of the water column, rna is the nitrogen-to-chl-a ratio, νs (m/d) is the settling 

velocity, km (d-1) is the mineralization rate, and θm is a dimensionless temperature adjustment 

for km. 

Bioavailable nutrients (DIN and OP) are delivered via riverine discharge, utilized by the 

phytoplankton for primary production, and are recycled back from the organic matter pool: 

𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

= (𝑥𝑥𝑖𝑖−1 − 𝑥𝑥𝑖𝑖) ∙
𝑄𝑄
𝑉𝑉𝑖𝑖
−  𝑟𝑟𝑥𝑥 ∙ 𝑘𝑘𝑔𝑔 ∙ 𝑎𝑎𝑖𝑖 ∙ ϕ𝑙𝑙,𝑖𝑖 ∙ ϕ ,𝑖𝑖 ∙ θ𝑔𝑔𝑇𝑇−20 + 𝑘𝑘𝑚𝑚 ∙ 𝑟𝑟𝑧𝑧 ∙ 𝑧𝑧𝑖𝑖 ∙ θ𝑚𝑚𝑇𝑇−20

−
𝐷𝐷𝑖𝑖−1:𝑖𝑖
′

𝑉𝑉𝑖𝑖
∙ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1) +

𝐷𝐷𝑖𝑖:𝑖𝑖+1′

𝑉𝑉𝑖𝑖
∙ (𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖) + Ψ 

𝑎𝑎 𝑇𝑇 𝑥𝑥

(4) 

where x is DIN (n, μg/L) or OP (p, μg/L), rxa is the algal nitrogen- or phosphorus-to-chl-a ratio (rna 

or rpa), rzx is the ratio of z to x (for n, rzx = 1, for p, rzx = rpa / rna), and Ψ is an additional source (+) 
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or sink (–) of x. For n, Ψ = − kd ∙ n ∙ θd
T−18.75 where kd (d-1) is the loss rate of DIN due to 

denitrification and other dissimilatory processes. For p, Ψ = Pf ∙ θp
T−18.75 ∙ h-1, where Pf (μg/m2/d) 

is the OP flux from the sediment. Note that 18.75 ºC is the mean NRE water temperature, and θd 

and θp are the associated temperature correction factors. While other types of nutrient fluxes (e.g., 

microbial N2 fixation) may also occur in the estuary, they are not expected to be large enough to 

substantially influence model calibration and prediction (Affourtit et al., 2001; Spruill and Bratton, 

2008; Whitall et al., 2003). 

The phytoplankton growth rate was adjusted as a function of environmental conditions, 

including nutrient availability (ϕN) and light regime (ϕl). Nutrient limitation was represented by a 

Monod (1949) relationship, ϕN=x/(ksx+x), where ksx (μg/L) is the half saturation constant for 

nutrient x. For Model 2, nutrient limitation is based only on DIN (phosphorus is not modeled). For 

Model 3, nutrient limitation is based on a Liebig’s law of the minimum, considering both DIN and 

OP, e.g. ϕN = min(ϕn, ϕp). Light limitation was represented using the Steele (1965) formulation, 

integrated over depth and time (eq. S4.1) following Chapra (2008). Daily values of the light 

extinction coefficient ke (m-1) required for ϕl estimation were determined via regressions with 

drivers of variability in optically active water quality constituents as explanatory variables. 

Chlorophyll a represented effects of absorbance by phytoplankton pigments, while 10-day natural 

log-transformed flow, 60-day temperature, and 2-day wind speed captured effects of season, flow, 

and resuspension on concentrations of chromophoric dissolved organic matter and suspended 

sediment (Section S4).  

For the Upper segment, boundary conditions ai-1, ni-1, pi-1, and zi-1 are riverine chl-a, DIN, 

OP, and non-algal organic matter concentrations, respectively. The latter term, zi-1, consisted of 

dissolved and particulate organic nitrogen concentration exclusive of algal content, represented as 
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chl-a concentration multiplied by rxa. For the lower Bend segment, boundary conditions ai+1, ni+1, 

pi+1, and zi+1 were dynamically estimated based on empirical relationships between observations 

at downstream sampling location 140 (Fig. 1) and concentrations within the Middle and Bend 

segments (Section S2). 

2.4 Model calibration and prior information 

Bayesian calibration (i.e., parameter estimation) allows for derivation of posterior 

parameter distributions by systematically updating prior knowledge using the observed data 

through the likelihood function (Gelman et al., 2013). For all three models, the likelihood function 

was established assuming normally distributed uncorrelated error in the natural log-transformed 

space (Del Giudice et al., 2018; Ott, 1990). All three models were calibrated to observed chl-a. 

Model 2 was additionally calibrated to DIN, and Model 3 was additionally calibrated to DIN and 

OP. Bayesian inference was numerically implemented using Markov Chain Monte Carlo sampling. 

Specifically, Model 1 was calibrated using the ‘RStan’ package (Stan Development Team, 2016), 

which efficiently implements a Hamiltonian Monte Carlo sampling algorithm (Betancourt, 2017; 

Sorensen and Vasishth, 2015). For Models 2 and 3, an adaptive Metropolis sampling algorithm 

was adopted (Del Giudice et al., 2015; Haario et al., 2001; Malve et al., 2007), as it provided more 

flexibility for integrating the differential equation solver (Section 2.3). For each model, three 

parallel sampling chains were run at 30,000 iterations, with the first 10,000 discarded as burn-in, 

so that the posterior distributions are based on 60,000 posterior samples. Convergence was 

considered achieved when the square root of the ratio of total variance to within-chain variance 

was approximately equal to one for all parameters (Gelman et al., 2013).  
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The priors for the parameters were defined using normal (N) and truncated normal (tN) 

distributions. Truncated distributions prevented negative parameter values when they were 

mechanistically implausible. The parameters for Model 1 received weakly informative priors 

(Table S3.1). Prior information for mechanistic Models 2 and 3 were based on previous 

literature (Table 1).  

 

Table 1 Prior parameters distributions for Models 2 (top 14) and 3 (all), derived from previous 

eutrophication studies in the NRE and elsewhere. Temperature corrections (θ) are associated with 

the preceding parameter. 

Parameter Description Units Prior Literature 

kg growth rate d-1 tN(1.0,0.3) 
(Bowen and Hieronymus, 2000; Kruk et 

al., 2010; Lung and Paerl, 1988; 
Pinckney et al., 2001; Roelke, 2007) 

θg temperature correction — tN(1.07,0.03) (Borsuk et al., 2004; Camacho et al., 
2015; Peierls and Paerl, 2010) 

rna ratio of n to a μgn/μga tN(7.2,3) (Chapra, 2008; Lung and Paerl, 1988) 

ksn half-sat constant, n μg/L tN(20,5) (Camacho et al., 2015; Chapra, 2008; 
Grover, 1989; Smayda, 1997) 

kr loss rate d-1 tN(0.15,0.05) (Chapra, 2008; EPA, 1985; Lung and 
Paerl, 1988; Ramin et al., 2011) 

θr temperature correction — tN(1.07,0.03) (Borsuk et al., 2004; Camacho et al., 
2015; Chapra, 2008) 

km recycling rate d-1 tN(0.15,0.05) (Arhonditsis et al., 2008, 2007; Ramin et 
al., 2011) 

θm temperature correction — tN(1.07,0.03) (Chapra, 2008; EPA, 1985; Liu et al., 
2012; Rigosi et al., 2011) 

νs settling rate m/d tN(0.20,0.05) (Arhonditsis et al., 2007; Lung and Paerl, 
1988; Ramin et al., 2011) 

Is optimal light level W/m2 tN(50,25) (Boyer et al., 1994; Chapra, 2008; 
Edwards et al., 2016) 

kd n removal rate d-1 tN(0.1,0.05) (Fear et al., 2005; Ramin et al., 2011) 
θd temperature correction — tN(1,0.05) (Fear et al., 2005; Khalil et al., 2018) 
σn residual SD for ln(n) ln(μg/L) tN(0,5) — 
σa residual SD for ln(a) ln(μg/L) tN(0,1) — 

ksp half-sat constant, p μg/L tN(1.5,1) (Camacho et al., 2015; Chapra, 2008; 
Grover, 1989; Smayda, 1997) 

rpa ratio of p to a gp/ga tN(1,0.3) (Lung and Paerl, 1988; Redfield et al., 
1963) 

Pf sediment p flux  μg/m2/d N(744,400) (Fear et al., 2004; Fisher et al., 1982) 
θp temperature correction — tN(1.08,0.05) (Chapra, 2008) 
σp residual SD for ln(p) ln(μg/L) tN(0,1) — 
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2.5 Models assessment, sensitivity, and scenario analysis 

Models were assessed based on their predictive skill and realism of uncertainty 

quantification. Predictive skill was evaluated by root mean squared error (RMSE) and R2, which 

represents the percent of the variance in the observations explained by the predictions (Faraway, 

2015). For skill assessment, chl-a and nutrient predictions were obtained using the means of the 

Bayesian posterior parameter distributions and were compared to biweekly observations. 

Predictive performance was further assessed through a two-fold cross validation (Stone, 1974), 

where the first fold included 1997-2007 and the second fold consisted of 2008-2018 data. The 

portion of observations falling within the 90% cross-validated model predictive intervals were 

compiled to determine whether the model realistically characterizes uncertainty. Additionally, to 

assess the importance of riverine discharge, nutrient concentrations, and loadings, a sensitivity 

analysis was performed for Model 3 by adjusting these discharge and concentration values by 

+/−30%, and calculating the percent change of average chl-a across the simulation period.  

All three models were used to screen the effect of changes in nutrient loading on mean chl-

a under various hydrologic conditions and seasons. Scenarios were simulated by increasing or 

decreasing historical daily riverine nutrient concentrations (and thus loadings) by fixed 

percentages and re-running the model over the entire period of record. For the mechanistic models, 

the different forms of riverine (particulate plus dissolved) nutrient inputs (algal organic, non-algal 

organic, and inorganic) were reduced by the same percentage. For Model 3, we accounted for the 

fact that organic matter includes both nitrogen and phosphorus, and when only altering one nutrient 

at a time, the portion of the non-altered nutrient associated with the reduction in organic matter 
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was shifted to the inorganic pool. Hydrologic classifications were based on whether annual median 

flows fell into the lower (<61.2 m3/d), middle (61.2-89.1 m3/d), or upper (>89.1 m3/d) third of 

historical flow conditions. Seasonal aggregations included winter (December – February), spring 

(March – May), summer (June – August), and fall (September – November).  

3 Results and Discussion 

3.1 Piecewise regression calibration (Model 1) 

Piecewise regression parameter estimates quantify the effect of 2-day mean discharge, 10-

day average TN concentration, and water temperature on chl-a (Fig. 3). Regression results confirm 

that chl-a has a nonlinear (breakpoint) relationship with river flow (Lucas et al., 2009; Peierls et 

al., 2012). Results indicate strong confidence (95% credible interval does not include zero) in the 

negative effect of discharge on chl-a at flows greater than the breakpoint (βQ,h, Fig. 3, Table S3.2), 

likely representing the dominance of flushing over nutrient delivery and phytoplankton growth 

during high flows. On the other hand, discharge has a strong positive effect on chl-a at flows lower 

than the breakpoint for the Bend segment (βQ,l), likely due to a shortage of bioavailable nutrients 

delivered downstream during low-flow conditions (Borsuk et al., 2004). Coefficients for discharge 

before the breakpoint (βQ,l) for Upper and Middle segments include zero within 95% credible 

intervals (βQ,l, Table S3.2), indicating a relatively weak relationship of chl-a with low flows. The 

estimated breakpoint (bp) increases downstream (Fig. 3), reflecting that higher discharges are 

needed for the effect of flushing to exceed the effect of increased nutrient delivery in segments 

with greater width and depth. Additionally, 95% credible intervals for (βTN) imply that we have a 

strong degree of confidence in estimating the positive effect of riverine TN concentration on chl-

a in the Middle and Bend segments of the estuary. These results are unique from Borsuk et al. 
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(2004), who found such relationships to be positive but insignificant for similar segments. 

Compared to previous studies that estimated significant (though not especially strong) positive 

relationships between temperature and chl-a (Borsuk et al., 2004; Hall et al., 2013), our regression 

results suggested weak water temperature effects on chl-a (Fig. 3, Table S3.2).  

 

Fig. 3 Prior (dashed, black) and posterior (solid, with colors referring to segments) probability 

distributions for the deterministic parameters of Model 1. Horizontal bands indicate the 95% 

credible intervals of the marginal posterior distributions. Y-axis represents relative probability 

density. Parameter estimates are tabulated in Table S3.2. 

3.2 Mechanistic model calibrations (Models 2 and 3) 

Twelve and sixteen parameters are estimated through Bayesian inference for 

Models 2 and 3, respectively (Fig. 4, Table S3.2). In general, the posterior parameter estimates are 
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within the range of reported values from previous laboratory and modeling studies, consistent with 

the prior distributions (Table 1). Most marginal posterior distributions are narrower than the priors, 

indicating that the model formulations are suitable for updating the parameter values given the 

available calibration data. However, the posterior distribution of settling velocity (νs) is slightly 

wider than the prior for both formulations, and could perhaps be refined by calibrating to measures 

of non-algal organic matter in the estuary in future research. 

The 95% credible intervals for the parameters of Model 3 typically overlap with those of 

Model 2, but there are some notable differences (Fig. 4). The estimates of phytoplankton growth 

(kg) and loss (kr) rates for Model 2 are greater than for Model 3. On the other hand, the best 

estimates of ratio of nitrogen to chl-a (rna) and optimal light level (Is) are smaller for Model 2 

compared to Model 3. Interestingly, the estimate of rna for Model 3 is higher than our prior, but 

close to values reported in other estuarine and coastal systems (Gowen et al., 1992; Li et al., 2010). 

While both models have similar predictive skill for chl-a and DIN (Section 3.4), differences in 

parameter estimates mentioned above indicate that the inclusion of phosphorus dynamics can 

substantially influence inference of mechanistic rates within a Bayesian framework. The posterior 

distributions also reveal substantial correlations among some parameters. For instance, 

phytoplankton growth rate (kg) has a strong positive correlation (r = 0.96) with loss rate (kr) 

indicating that an increase in one parameter can be largely compensated for by an increase in the 

other (see eq. 2). Additionally, phosphorus flux from the sediment (Pf) was negatively correlated 

with its temperature correction factor (θp, r = −0.95). However, despite these correlations, 

posterior distributions remain relatively tight when compared to the priors (Fig. 4). 

The mechanistic models allow for an assessment of nutrient fluxes associated with 

(implicitly represented) sediment diagenesis and denitrification. Average flux of OP from the 
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sediments is 0.67 µg/L/d which is within the range of previously reported values for the NRE (Fear 

et al., 2004; Matson et al., 1983; Rizzo and Christian, 1996). Additionally, the high temperature 

correction coefficient, θp, (Fig. 4) suggests increased rates of phosphorus release from the sediment 

in summer compared to winter (mean fluxes are 1.87 and 0.01 μg/L/d, respectively), likely due to 

combined effects of high temperature and hypoxic conditions during summer (Cowan and 

Boynton, 1996; Fisher et al., 1982). Nitrogen removal rates from the water column are found to be 

9.6 µg/L/d, which is consistent with previously estimated average denitrification rate for the NRE 

(8.7 µg/L/d) (Fear et al., 2005). This study confirms that dissimilatory nitrogen losses are lower in 

summer than in winter (mean fluxes are 7.34 and 22.6 µg/L/d, respectively), likely due to 

decreased DIN delivery (Fear et al., 2005; Piehler et al., 2002) and inhibited nitrification associated 

with oxygen deficits in summer (Hansen et al., 1981).  
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Fig. 4 Prior and posterior probability distributions for the calibrated deterministic parameters of 

Models 2 and 3. Horizontal bands indicate the 95% credible intervals of the marginal posterior 

parameter distributions. Y-axis represents relative probability density. Parameters are unitless 

unless indicated. Posterior parameter estimates are tabulated in Table S3.2.  
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3.3 Phytoplankton growth rate adjustment 

The mechanistic models allow for exploring how temperature, light, and nutrient 

availability affect phytoplankton growth. Focusing on Model 3, the phytoplankton growth rate is 

reduced by 85%, on average, relative to the maximum growth rate at 20ºC (Fig. 5, black). These 

reductions are due to a combination of nutrient and light limitation, coupled with temperature 

adjustments. 

Nutrient limitation, ϕN, is more influential in summer and less strong in winter, reducing 

average growth rates by 42% and 21% in these seasons, respectively (Fig. 5, orange). It is notable 

that nutrient limitation of phytoplankton growth has the greatest environmental (i.e., temporal) 

variability compared to temperature and light effects (Fig. 5). As riverine nutrients are consumed 

by phytoplankton, results indicate that substantial nutrient limitation (i.e., ϕN < 0.83; Chapra, 2008) 

increases moving down the estuary, occurring 41%, 68%, and 74% of the time for Upper, Middle 

and Bend segments (Fig. 6). We also see that nutrient limitation is most severe under dry (i.e., low 

river flow) conditions, even in winter months (Fig. 6).  

Nitrogen is the main nutrient limiting phytoplankton production in the NRE; about 60% of 

the time based on Model 3, which is consistent with previous studies for this estuary (Cira et al., 

2016; Paerl et al., 1995; Pinckney et al., 2001; Rudek et al., 1991) and the general concept of 

nitrogen limitation in estuarine and coastal waters (Nixon, 1995; Howarth and Marino, 2006). 

Phosphorus is found to limit primary production only about 1.3% of the time (107 d over almost 

22 years) in any segment over two decades. These rare phosphorus-limitation events occurred 

mostly in the Upper segment in late winter and early spring (Fig. 6) when TP loadings were 

substantially depressed. These results agree well with previous experimental findings for the NRE 

that showed  occasional phosphorus controls on chl-a production that occurred only in late winter 
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and early spring (Pinckney et al., 1999; Rudek et al., 1991). Expectedly, if riverine TP 

concentration is reduced by 30% in the model, phosphorus limitation becomes more pronounced, 

occurring 15% of the time, but nitrogen remains the key nutrient, limiting phytoplankton growth 

46% of the time. These results are consistent with findings from both the Gulf of Mexico (Fennel 

and Laurent, 2018) and Chesapeake Bay (Malone et al., 1996), which defined nitrogen as the major 

limiting nutrient and phosphorus occasionally limiting in spring and early summer. 

Light availability in this turbid estuary is also a major regulator of phytoplankton growth, 

reducing it on average by 77% (Fig. 2.5, yellow), though part of this is simply attributable to the 

sun being down 50% of the time (at night), on average (Section S2.4). The additional light 

limitation (27%) occurs due to light attenuation in the atmosphere (e.g., cloud cover) and water 

column. These results are generally consistent with previous estuarine studies that outlined the 

importance of light in influencing primary productivity (Gameiro et al., 2011; Pennock and Sharp, 

1992). Factors affecting the water column light extinction coefficient (ke) were estimated via 

Bayesian regression (Section S4, eq. S4.5). Results from this regression quantify how algal 

accumulation (chl-a) increases light extinction, while background attenuation decreases moving 

down the estuary, presumably due to the settling of suspended material and the dilution, 

degradation, and flocculation of chromophoric dissolved organic matter (Vähätalo and Zepp, 

2005). Background attenuation is also strongly related to riverine discharge (natural log-

transformed discharge alone explains 36% of variability in light extinction coefficient), which is 

typical for a river-dominated estuary (Bowen and Hieronymus, 2003; McSweeney et al., 2017).  

Temperature only slightly influences growth rate in the mechanistic model. In Model 3, 

temperature enhances summer growth by 5% and decreases growth rate in winter by 6% relative 

to the maximum growth rate at 20ºC (Fig. 5, red). Overall, the temperature effects observed in this 
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study (all models) are smaller than those reported in the previous studies (Table 2.1). A possible 

explanation for this discrepancy may be that different phytoplankton populations have various 

optimal temperatures, consistent with observed blooms of specific taxa occurring throughout the 

year (Pinckney et al., 1998). Finally, the estimated temperature adjustments may reflect additional 

drivers of seasonal variability (e.g., vertical stratification) or changes in grazer communities that 

are not explicitly accounted for in the model (Wetz et al., 2011). 

 

Fig. 5 Monthly adjustment of calibrated phytoplankton growth rate at 20ºC (kg = 0.64 d-1) to 

temperature, nutrients, light, and all three factors combined. Results are from Model 3 and 

averaged across all three segments. Environmental variability is represented by the boxes showing 

interquartile range, while center line is the median. Whiskers extend to the extreme value or 1.5 

times the interquartile range (whichever is less). 
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Fig. 6 Percent of time when nitrogen or phosphorus limitation occurs in the Upper, Middle, and 

Bend segments, shown for different hydrologic regimes and seasons (Model 3). Note that nutrient 

limitation is considered to occur when either DIN or OP is less than five times their respective 

Monod half saturation constants (Chapra, 2008). 

3.4 Model predictive skill 

Overall, Models 1, 2, and 3 explain 43%, 38%, and 38% of variability in log-transformed 

chl-a, respectively, across all seasons and segments (Fig. 7 top row, Table S5) with corresponding 

RMSEs of 0.65, 0.68, and 0.67 ln(μg/L). For comparison, cross-validated Models 1, 2, and 3 

explain 37%, 36%, and 35% of variability in log-transformed observed chl-a, respectively, with 

corresponding RMSEs of 0.68, 0.69, and 0.70 ln(μg/L). The larger drop in performance for 
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Model 1 (i.e., R2 of 43% drops to 37% in cross validation) suggests it is less robust, though it still 

slightly outperforms the mechanistic models. In cross validation, 11.4%, 20.5%, and 18.5% of the 

observations fall outside of the 90% prediction intervals for Models 1, 2, and 3, respectively, 

indicating the models somewhat underrepresent forecasting uncertainty. In general, uncertainties 

may be underestimated due to temporal autocorrelation among the biweekly samples (e.g., 

Fig. S5), which could be a subject for future model improvement (Reichert and Mieleitner, 2009).  

Consistent with results from previous studies, performances decline moving downstream 

for all models (Table S5), likely due to diminishing hydrologic forcing (Borsuk et al., 2003; Bowen 

and Hieronymus, 2003; Wool et al., 2003) and less variability in chl-a observations (standard 

deviations of 1.0, 0.78 and 0.69 ln(μg/L) for Upper, Middle, and Bend segments, respectively) that 

can reduce the signal to noise ratio of the data. Interestingly, the mechanistic models perform better 

than the statistical model in the Middle segment but worse in the Upper and Bend segments 

(Table S5). It is important to note that Models 2 and 3 were also calibrated to bioavailable 

nutrients, with both models explaining 64% of variability in DIN, and Model 3 additionally 

explaining 56% of variability in OP (Fig. 7).  
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Fig. 7 Observed versus predicted natural log-transformed chl-a (top row), DIN (middle row) and 

OP (bottom row) concentrations for 22-year study period for the three models. Black diagonals 

represent the 1:1 line (i.e., line of perfect prediction). 
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3.5 Sensitivity to riverine inputs 

River discharge influences residence time, nutrient delivery, and light availability in 

estuarine systems (Abreu et al., 2010; Cloern, 2001; Liu et al., 2018; Wang et al., 2019). Previous 

NRE studies outlined the role of riverine inputs in controlling estuarine algal biomass and 

composition (Borsuk et al., 2004; Hall et al., 2013; Peierls et al., 2012), but have not isolated and 

quantified chl-a responses to changes in discharge, concentration, and loading. Here, sensitivity 

analysis (based on Model 3) focused on changing flows and loadings +/−30%. While riverine 

inputs have considerable interannual variability, we assumed +/−30% represents a reasonable 

long-term response due to changes in climate and anthropogenic watershed activities, and it is also 

consistent with TMDL reduction target (NCDWQ, 2001). From this analysis, the greatest increase 

in chl-a (+18.3% across segments, Table 2, case E) occurs when flow is reduced by 30% and 

loading is held constant, such that riverine nutrient concentrations increase by 43%. Conversely, a 

large chl-a reduction in the Upper segment (−17.6%, case F) occurs when flow is increased by 

30% and loading is held constant. However, for the Middle and Bend segments, the greatest chl-a 

reductions are in response to 30% riverine concentration and loading reductions (with flows held 

constant, case C).  

Congruent changes in river flow and load (Table 2, cases A and B), such that nutrient 

concentrations remained the same, had relatively little impact on chl-a concentrations. However, 

it is noteworthy that for both cases A and B, the effect on chl-a in the Bend segment is almost the 

same (a small reduction). Here, when flows and loadings are reduced by 30%, less nutrients reach 

this downstream segment, but when flows and loadings are increased 30%, the effects of flushing 

over-compensates for the increased nutrient loading. These results indicate that current flow rates 

provide near-optimal conditions for chl-a accumulation in the Bend segment. At the same time, 
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we note that the largely negative relationships between flow and chl-a (considering all segments) 

are coherent with a recent hypoxia study, which indicated the important role of winter discharge 

in flushing biomass and diminishing deposition of organic matter to the sediments (Katin et al., 

2019).  

Overall, these results provide a mechanistic quantification of how freshwater inputs have 

a strong and multifaceted effect on phytoplankton production and water quality in the NRE (Paerl 

et al., 2014; Peierls et al., 2012; Pinckney et al., 1999). From a watershed management perspective, 

these results highlight the importance of controlling dry weather loads (e.g., point sources, leaking 

animal wastes), which can lead to high riverine nutrient concentrations in dry years (Alameddine 

et al., 2011; Strickling and Obenour, 2018). Such a scenario is approximately analogous to 

case E (Table 2). 

Table 2 Percent change in chl-a for Upper, Middle, Bend, and overall NRE, relative to average 

baseline concentrations of 14.3, 16.4, 16.6, and 15.8 µg/L, respectively. Estuary response are 

shown based on sensitivity-analysis adjustments to riverine discharge (Q), riverine TN and TP 

loadings (L), and concentrations (c). The largest (positive and negative) changes in chl-a are 

highlighted in bold. All results are based on Model 3. 

case 
input variation segment response overall 

response Q L c Upper Middle Bend 

A −30% −30% − 4.3% 0.4% −0.5% 1.3% 
B +30% +30% − −4.6% −1.7% −0.8% −2.3% 
C − −30% −30% −16.6% −13.8% −11.5% −13.8% 
D − +30% +30% 16.0% 13.3% 11.0% 13.3% 
E −30% 0% +43% 25.5% 17.2% 13.2% 18.3% 
F +30% 0% −23% −17.6% −12.9% −10.2% −13.4% 
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3.6 Nutrient loading scenarios 

Because watershed nutrient loading is the most management-relevant estuary input, we 

compare estuary chl-a responses to a range of loading adjustments using all three models (Fig. 8). 

All models indicate that chl-a is responsive to reductions in riverine TN load and concentration 

(flow is held constant). For instance, a 30% TN loading reduction will result in 26.0%, 16.1% and 

13.7% decrease in average chl-a concentrations for Models 1, 2, and 3, respectively. On the other 

hand, these models suggest that a 30% increase in TN loadings will result in 38.3%, 15.6% and 

12.2% rises in chl-a, respectively. Thus, Model 1 is most responsive, averaging a 10.4% chl-a 

adjustment for each 10% TN change. We note that the magnitude of this response could be partially 

related to the transformations used in the regression (natural log for chl-a, but no transformation 

for TN), which were applied consistent with Borsuk et al. (2004). Interestingly, the Model 1 

responses are somewhat similar to those documented for the nearby New River Estuary (NC), 

where statistical analyses of observed data indicated that each 10% reduction in total nutrients 

would decrease chl-a by 13.2% (Mallin et al., 2005). However, from a more mechanistic 

perspective, it is unclear how the ratio of % change in chl-a to nutrients could exceed 1:1 based on 

stoichiometric considerations (Chapra, 2008). Furthermore, negative feedbacks, such as increased 

algal biomass leading to more light extinction, would suggest ratios of less than 1:1. Consistent 

with these mechanistic considerations, Models 2 and 3 indicate smaller responses to loading 

perturbations, where chl-a is altered 5.3% and 4.3%, respectively, for each 10% TN loading 

change. These mechanistic model results broadly support previous NRE studies, which indicated 

4.4% (Borsuk et al., 2002), 5.1% (Bowen and Hieronymus, 2003), 4.9% (Wool et al., 2003) 

reductions in chl-a to similar TN reductions. It is also worthwhile to compare with other systems 
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like Tampa Bay, where each 10% TN loading reduction resulted in about a 6.7% decrease in chl-

a (Greening and Janicki, 2006).  

Additionally, Model 3 is used to investigate how simultaneous nitrogen and phosphorus 

loading modifications affect chl-a levels. When riverine TN and TP are altered by 10%, chl-a 

changes by 4.6% (Fig. 8), compared to a 4.3% response when altering TN only. This result is 

generally consistent with a study in Boston Harbor, where a 10% TN loading reduction with 

parallel 11.3% TP reduction helped to reduce chl-a by 3.5% (Taylor et al., 2011). If solely TP is 

reduced by 10% or 30%, then chl-a is expected to decrease by just 0.3% or 2.4%, respectively 

(averaged across all segments). Interestingly, if sediment phosphorus (Pf) flux is reduced 

proportionally to TP load, there is little additional reduction in chl-a (<1%). While these results 

suggest that nitrogen controls alone are nearly as effective as combined nitrogen and phosphorus 

control, we caution that reducing just one nutrient may produce undesirable shifts in phytoplankton 

community composition (Berthold et al., 2018; Kelly et al., 2019; Paerl et al., 2016) or the location 

of algal blooms in the estuary (Paerl et al., 2004). Thus, parallel nitrogen and phosphorus controls 

should be considered for long-term NRE eutrophication management.  

Seasonally, the statistical model (Model 1) does not exhibit diverse responses to nutrient 

loading (Fig. 8). In Model 1, seasonality is primarily represented by temperature via coefficient 

βT, which largely overlaps zero (Fig. 4). However, the mechanistic models indicate larger 

responses of chl-a to loading changes in the spring, particularly under dry conditions (Fig. 8). 

Across hydrologic conditions, a 30% change in nutrient loading will result in 17.9%, 12.8%, 

10.5%, and 13.5% changes in chl-a in spring, summer, fall, and winter, respectively. The periods 

with greater chl-a responses are generally those with higher flows and nutrient loadings. 
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Fig. 8 Average chl-a predictions across all segments from Models 1, 2, and 3 shown for four 

seasons and three hydrologic conditions under various TN loading adjustments (TN and TP in the 

case of Model 3). Loading scenarios are based on modifying riverine incoming nutrient 

concentrations by the percent shown; flows and other model inputs are held constant. For clarity, 

90% credible intervals are shown only for summer scenarios (blue ribbon). 
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Another way of assessing the influence of riverine nutrients on chl-a is by focusing on the 

probability of chl-a exceeding the State criterion of 40 µg/L. For instance, a 30% reduction in TN 

and TP would help to reduce the probability of chl-a violating the criterion in Middle and Bend 

segments from 11% to 8%, which is less than the 10% exceeded rate allowed by NC water quality 

criteria (Fig. S6). Thus, this study implies a smaller loading reduction than Borsuk et al. (2003), 

which suggested a 45% reduction was needed. However, it should be noted that the study period 

(1997-2018) has a 7% lower average riverine TN concentration than the baseline period (1998-

2000) used for previous NRE assessments (Stow et al., 2003).  

3.7 Bayesian approach and model comparison 

This study advances the development of statistical and mechanistic water quality models 

for river-dominated estuarine systems within the Bayesian framework. While piecewise regression 

(Model 1) is based on relatively simple empirical relationships drawing on previous modeling 

efforts, this is the first time the approach has been embedded in a Bayesian hierarchical framework. 

Moreover, Models 2 and 3 expand the spatio-temporal scope of Bayesian mechanistic 

phytoplankton modeling relative to previous studies (Parslow et al., 2013; Ramin et al., 2011) by 

simulating chl-a dynamics over multiple decades and across a longitudinally segmented 

waterbody. The models were designed to be computationally efficient, allowing us to obtain daily 

simulations over almost 22 years quickly (i.e., less than 4 s), which facilitates the MCMC approach 

to Bayesian inference. Within the Bayesian framework, model parameters are informed by a 

combination of prior literature findings and the multi-decadal calibration data, enabling systematic 

parameter estimation and uncertainty quantification (Beck, 1987; Ganju et al., 2016).  
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However, both types of models possess limitations, including coarse spatial resolution and 

simple or implicit representation of certain processes (e.g. sediment diagenesis, denitrification). 

Furthermore, the model represents grazing as a simple first-order loss rate, without consideration 

of more complex trophodynamics (Kimmel et al., 2015). Even given these limitations, all three 

models explain a substantial portion of longitudinal variability in natural log-transformed chl-a in 

the NRE (R2 > 0.35, Section 3.4). Unexplained variability in chl-a might be due to factors beyond 

model structure, including erratic bloom-forming phytoplankton taxa (Paerl et al., 2018a, 2014; 

Pinckney et al., 1998), the spatial patchiness of biomass (Hall et al., 2013), and variable ratios of 

chl-a to nutrients (Geider et al., 1997; Jakobsen and Markager, 2016). Additionally, the cross-

validation RMSEs of all three models (Table S5, average of 0.69 ln(μg/L)) suggest favorable 

predictive performance when compared to previous NRE modeling studies with average RMSE of 

0.86 ln(μg/L) (Stow et al., 2003).  

Model 1 performs similar to the mechanistic Models 2 and 3 for the prediction of chl-a 

when subject to cross validation (Section 3.4). Thus, the piecewise regression provides a relatively 

simple and computationally efficient approach to forecasting algal levels. At the same time, 

mechanistic Models 2 and 3 integrate over a wider range of biogeochemical processes and are 

simultaneously calibrated to bioavailable nutrients, explaining the majority (R2 > 0.5) of variability 

in DIN and OP (Fig. 7). Also, parameters in the mechanistic models have physical meaning and 

can be readily informed based on prior information, which promotes a realistic representation of 

biophysical relationships and relatively robust predictive performance based on cross validation, 

consistent with another recent phytoplankton model comparison study (Han et al., 2021). 

Additionally, the mechanistic models lead to more realistic load reductions scenarios, as described 

in Section 3.6, with substantially reduced uncertainty (i.e., credible intervals, Fig. 8). Thus, the 
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mechanistic models appear advantageous when predicting the response of the estuary to major 

changes in riverine inputs.  

4 Conclusions 

In this study, we compared empirical and mechanistic phytoplankton modeling approaches 

to evaluate how hydrologic forcings and nutrient limitation govern eutrophication in a shallow 

estuary. We developed these approaches using Bayesian inference, which assimilates prior 

knowledge and calibration data to provide probabilistic parameter estimates and water quality 

predictions. The resulting models characterize the role of riverine inputs and indicate that nutrient 

concentration reductions, due to either increased flow dilution or reduced load, are the key to 

reducing algal levels in the estuary. Although the purely statistical model had slightly higher 

predictive skill for chl-a, the mechanistic approach allows for a more thorough assessment of 

controls on algal productivity, simulation of nutrients, and more realistic scenario forecasts with 

reduced uncertainties. Additionally, mechanistic model results suggest that nutrient limitation of 

algal growth is dominated by nitrogen, rather than phosphorus, even in the upstream (less-saline) 

portion of the study area. Overall, the mechanistic models appear more useful for evaluating the 

hypothetical nutrient loading scenarios and for providing multifaceted support of management 

decisions. Finally, model results suggest that achievement of the current nutrient reduction goal 

(30% TN reduction) will most likely facilitate compliance with NC criteria, based on the frequency 

of exceeding high chl-a (40 μg/L) concentrations. The Bayesian mechanistic approach developed 

here can be transferred to other river-dominated estuaries, and the posterior parameter distributions 

from this study can potentially inform prior distributions for future models of less monitored 

systems. 
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