2,821 research outputs found

    Generalizations of the Strong Arnold Property and the minimum number of distinct eigenvalues of a graph

    Get PDF
    For a given graph G and an associated class of real symmetric matrices whose off-diagonal entries are governed by the adjacencies in G, the collection of all possible spectra for such matrices is considered. Building on the pioneering work of Colin de Verdiere in connection with the Strong Arnold Property, two extensions are devised that target a better understanding of all possible spectra and their associated multiplicities. These new properties are referred to as the Strong Spectral Property and the Strong Multiplicity Property. Finally, these ideas are applied to the minimum number of distinct eigenvalues associated with G, denoted by q(G). The graphs for which q(G) is at least the number of vertices of G less one are characterized.Comment: 26 pages; corrected statement of Theorem 3.5 (a

    Expected values of parameters associated with the minimum rank of a graph

    Get PDF
    We investigate the expected value of various graph parameters associated with the minimum rank of a graph, including minimum rank/maximum nullity and related Colin de Verdière-type parameters. Let G(v,p) denote the usual Erdős-Rényi random graph on v vertices with edge probability p. We obtain bounds for the expected value of the random variables mr(G(v,p)), M(G(v,p)), ν(G(v,p)) and ξ(G(v,p)), which yield bounds on the average values of these parameters over all labeled graphs of order v

    Distribution, Seasonality and Abundance of King and Spanish Mackerel Larve in the Northwestern Gulf of Mexico (Pisces: Scombridae)

    Get PDF
    Larvae of king mackerel, Scomberomorus cavalla, and Spanish mackerel, S. maculatus were collected from 1975 through 1977 off the Texas coast. Both species were captured from May through October. S. cavalla was relatively more abundant of the two species and occurred most abundantly over the middle and outer continental shelf (35-183 m). At least 35% of the larvae were captured in September of each year. S. maculatus larvae occurred most abundantly over the inner continental shelf (12 to 50 m). S. cavalla spawned from May through September to early October, with the greatest spawning intensity occurring over the middle and outer continental shelf during September. S. maculatus spawned from May through September to early October over the inner continental shelf, but spawning was less intensive and more irregular than for S. cavalla. Comparisons with other larval studies of S. cavalla and S. maculatus suggest that the northwestern and northeastern Gulf of Mexico and the coast off the southeastern United Stales are important spawning areas for S. cavalla and that the eastern and northeastern Gulf of Mexico are important spawning areas for S. maculatus

    On the graph complement conjecture for minimum rank

    Get PDF
    AbstractThe minimum rank of a graph has been an interesting and well studied parameter investigated by many researchers over the past decade or so. One of the many unresolved questions on this topic is the so-called graph complement conjecture, which grew out of a workshop in 2006. This conjecture asks for an upper bound on the sum of the minimum rank of a graph and the minimum rank of its complement, and may be classified as a Nordhaus–Gaddum type problem involving the graph parameter minimum rank. The conjectured bound is the order of the graph plus two. Other variants of the graph complement conjecture are introduced here for the minimum semidefinite rank and the Colin de Verdière type parameter ν. We show that if the ν-graph complement conjecture is true for two graphs then it is true for the join of these graphs. Related results for the graph complement conjecture (and the positive semidefinite version) for joins of graphs are also established. We also report on the use of recent results on partial k-trees to establish the graph complement conjecture for graphs of low minimum rank

    The Inverse Eigenvalue Problem of a Graph

    Get PDF
    Inverse eigenvalue problems appear in various contexts throughout mathematics and engineering, and refer to determining all possible lists of eigenvalues (spectra) for matrices fitting some description. The inverse eigenvalue problem of a graph refers to determining the possible spectra of real symmetric matrices whose pattern of nonzero off-diagonal entries is described by the edges of a given graph (precise definitions of this and other terms are given in the next paragraph). This problem and related variants have been of interest for many years and were originally approached through the study of ordered multiplicity lists.This report resulted from the Banff International Research Station Focused Research Groups and is published as Barrett, Wayne, Steve Butler, Shaun Fallat, H. Tracy Hall, Leslie Hogben, Jephian CH Lin, Bryan Shader, and Michael Young. "The inverse eigenvalue problem of a graph." Banff International Research Station: The Inverse Eigenvalue Problem of a Graph, 2016. Posted with permission.</p

    The Enhanced Principal Rank Characteristic Sequence

    Get PDF
    The enhanced principal rank characteristic sequence (epr-sequence) of a symmetric n×n matrix is a sequence ℓ1ℓ2⋯ℓn where ℓk is A, S, or N according as all, some, or none of its principal minors of order k are nonzero. Such sequences give more information than the (0,1) pr-sequences previously studied (where basically the kth entry is 0 or 1 according as none or at least one of its principal minors of order k is nonzero). Various techniques including the Schur complement are introduced to establish that certain subsequences such as NAN are forbidden in epr-sequences over fields of characteristic not two. Using probabilistic methods over fields of characteristic zero, it is shown that any sequence of As and Ss ending in A is attainable, and any sequence of As and Ss followed by one or more Ns is attainable; additional families of attainable epr-sequences are constructed explicitly by other methods. For real symmetric matrices of orders 2, 3, 4, and 5, all attainable epr-sequences are listed with justifications

    Rigid linkages and partial zero forcing

    Get PDF
    Connections between vital linkages and zero forcing are established. Specifically, the notion of a rigid linkage is introduced as a special kind of unique linkage and it is shown that spanning forcing paths of a zero forcing process form a spanning rigid linkage and thus a vital linkage. A related generalization of zero forcing that produces a rigid linkage via a coloring process is developed. One of the motivations for introducing zero forcing is to provide an upper bound on the maximum multiplicity of an eigenvalue among the real symmetric matrices described by a graph. Rigid linkages and a related notion of rigid shortest linkages are utilized to obtain bounds on the multiplicities of eigenvalues of this family of matrices.Comment: 23 page

    On the minimum rank of not necessarily symmetric matrices : a preliminary study

    Get PDF
    The minimum rank of a directed graph G is defined to be the smallest possible rank over all real matrices whose ijth entry is nonzero whenever (i, j) is an arc in G and is zero otherwise. The symmetric minimum rank of a simple graph G is defined to be the smallest possible rank over all symmetric real matrices whose ijth entry (for i _= j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. Maximum nullity is equal to the difference between the order of the graph and minimum rank in either case. Definitions of various graph parameters used to bound symmetric maximum nullity, including path cover number and zero forcing number, are extended to digraphs, and additional parameters related to minimum rank are introduced. It is shown that for directed trees, maximum nullity, path cover number, and zero forcing number are equal, providing a method to compute minimum rank for directed trees. It is shown that the minimum rank problem for any given digraph or zero-nonzero pattern may be converted into a symmetric minimum rank problem

    Modeling and Simulation Techniques for the NASA SLS Service Module Panel Separation Event; from Loosely-Coupled Euler to Fully-Coupled 6-DOF, Time-Accurate, Navier-Stokes Methodologies

    Get PDF
    An aerodynamic database has been generated for use by the Orion Multi-Purpose Crew Vehicle (MPCV) Program to analyze Service Module (SM) panel jettison from the NASA SLS vehicle. The database is a combination of CFD data for the panel aerodynamic coefficients, and MATLAB code written to query the CFD data. The Cart3D inviscid CFD flow solver was used to generate the panel aerodynamic coefficients for static panel orientations and free stream conditions that can occur during the jettison event. The MATLAB code performs the multivariate interpolation to obtain aerodynamic coefficients. The MATLAB code uses input for SM panel parameters and returns the SM panel aerodynamic force and moment coefficients for use with a Six-Degree-of-Freedom (6-DOF) motion solver to model the jettison event. This paper examines the accuracy of the sequential-static database approach by modeling the panel jettison event with a fully-coupled, time-dependent, viscous, moving-body CFD simulation. The fully-coupled simulation is obtained using the Loci/Chem unstructured Navier-Stokes CFD solver. The results show that the fully-coupled approach agrees well with the loosely-coupled database/6-DOF approach, indicating that unsteady effects are minimal for the panel jettison event. These results suggest that the database/6-DOF approach is sufficient. In addition, this paper presents the development of an uncertainty model for use in Monte Carlo analysis of the panel jettison event. Here viscous CFD simulations are obtained with Loci/Chem and compared to the inviscid CFD forces and moments. An uncertainty model based on model-form error and numerical error is presented
    • …
    corecore