3,747 research outputs found

    Survivorship Patterns of Larval Amphibians Exposed to Low Concentrations of Atrazine

    Get PDF
    Amphibians can be exposed to contaminants in nature by many routes, but perhaps the most likely route is agricultural runoff in amphibian breeding sites. This runoff results in high-level pulses of pesticides. For example, atrazine, the most widely used pesticide in the United States, can be present at several parts per million in agricultural runoff. However, pesticide levels are likely to remain in the environment at low levels for longer periods. Nevertheless, most studies designed to examine the impacts of contaminants are limited to short-term (~ 4 days) tests conducted at relatively high concentrations. To investigate longer-term (~ 30 days) exposure of amphibians to low pesticide levels, we exposed tadpoles of four species of frogs—spring peepers (Pseudacris crucifer), American toads (Bufo americanus), green frogs (Rana clamitans), and wood frogs (Rana sylvatica)—at early and late developmental stages to low concentrations of a commercial preparation of atrazine (3, 30, or 100 ppb; the U.S. Environmental Protection Agency drinking water standard is 3 ppb). We found counterintuitive patterns in rate of survivorship. Survival was significantly lower for all animals exposed to 3 ppb compared with either 30 or 100 ppb, except the late stages of B. americanus and R. sylvatica. These survival patterns highlight the importance of investigating the impacts of contaminants with realistic exposures and at various developmental stages. This may be particularly important for compounds that produce greater mortality at lower doses than higher doses, a pattern characteristic of many endocrine disruptors

    Regulation and Function of Activity-Dependent Homer in Synaptic Plasticity

    Get PDF
    Alterations in synaptic signaling and plasticity occur during the refinement of neural circuits over the course of development and the adult processes of learning and memory. Synaptic plasticity requires the rearrangement of protein complexes in the postsynaptic density (PSD), trafficking of receptors and ion channels and the synthesis of new proteins. Activity-induced short Homer proteins, Homer1a and Ania-3, are recruited to active excitatory synapses, where they act as dominant negative regulators of constitutively expressed, longer Homer isoforms. The expression of Homer1a and Ania-3 initiates critical processes of PSD remodeling, the modulation of glutamate receptor-mediated functions, and the regulation of calcium signaling. Together, available data support the view that Homer1a and Ania-3 are responsible for the selective, transient destabilization of postsynaptic signaling complexes to facilitate plasticity of the excitatory synapse. The interruption of activity-dependent Homer proteins disrupts disease-relevant processes and leads to memory impairments, reflecting their likely contribution to neurological disorders

    The electron transport chain sensitisesStaphylococcus aureus and Enterococcus faecalis to the oxidative burst

    Get PDF
    Small colony variants (SCVs) of Staphylococcus aureus typically lack a functional electron transport chain and cannot produce virulence factors such as leukocidins, hemolysins or the anti-oxidant staphyloxanthin. Despite this, SCVs are associated with persistent infections of the bloodstream, bones and prosthetic devices. The survival of SCVs in the host has been ascribed to intracellular residency, biofilm formation and resistance to antibiotics. However, the ability of SCVs to resist host defences is largely uncharacterised. To address this, we measured survival of wild-type and SCV S. aureus in whole human blood, which contains high numbers of neutrophils, the key defense against staphylococcal infection. Despite the loss of leukcocidin production and staphyloxanthin biosynthesis, SCVs defective for heme or menquinone biosynthesis were significantly more resistant to the oxidative burst than wild-type bacteria in human blood or the presence of purified neutrophils. Supplementation of the culture medium of the heme-auxotrophic SCV with heme, but not iron, restored growth, hemolysin and staphyloxanthin production, and sensitivity to the oxidative burst. Since Enterococcus faecalis is a natural heme auxotroph and cause of bloodstream infection, we explored whether restoration of the electron transport chain in this organism also affected survival in blood. Incubation of E. faecalis with heme increased growth and restored catalase activity, but resulted in decreased survival in human blood via increased sensitivity to the oxidative burst. Therefore, the lack of functional electron transport chains in SCV S. aureus and wild-type E. faecalis results in reduced growth rate but provides resistance to a key immune defence mechanism

    Rescue of long-term memory after reconsolidation blockade

    Get PDF
    Memory reconsolidation is considered to be the process whereby stored memories become labile on recall, allowing updating. Blocking the restabilization of a memory during reconsolidation is held to result in a permanent amnesia. The targeted knockdown of either Zif268 or Arc levels in the brain, and inhibition of protein synthesis, after a brief recall results in a non-recoverable retrograde amnesia, known as reconsolidation blockade. These experimental manipulations are seen as key proof for the existence of reconsolidation. However, here we demonstrate that despite disrupting the molecular correlates of reconsolidation in the hippocampus, rodents are still able to recover contextual memories. Our results challenge the view that reconsolidation is a separate memory process and instead suggest that the molecular events activated initially at recall act to constrain premature extinction

    Hippocampal Regulation of Postsynaptic Density Homer1 by Associative Learning

    Get PDF
    Genes involved in synaptic plasticity, particularly genes encoding postsynaptic density proteins, have been recurrently linked to psychiatric disorders including schizophrenia and autism. Postsynaptic density Homer1 proteins contribute to synaptic plasticity through the competing actions of short and long isoforms. The activity-induced expression of shortHomer1isoforms,Homer1aandAnia-3, is thought to be related to processes of learning and memory. However, the precise regulation ofHomer1aandAnia-3with different components of learning has not been investigated. Here, we used in situ hybridization to quantify short and longHomer1expression in the hippocampus following consolidation, retrieval, and extinction of associative fear memory, using contextual fear conditioning in rats.Homer1aandAnia-3, but not longHomer1, were regulated by contextual fear learning or novelty detection, although their precise patterns of expression in hippocampal subregions were dependent on the isoform. We also show for the first time that the two short Homer1 isoforms are regulated after the retrieval and extinction of contextual fear memory, albeit with distinct temporal and spatial profiles. These findings support a role of activity-induced Homer1 isoforms in learning and memory processes in discrete hippocampal subregions and suggest that Homer1a and Ania-3 may play separable roles in synaptic plasticity.</jats:p

    Views from within a narrative : Evaluating long-term human-robot interaction in a naturalistic environment using open-ended scenarios

    Get PDF
    Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Date of acceptance: 16/06/2014This article describes the prototyping of human–robot interactions in the University of Hertfordshire (UH) Robot House. Twelve participants took part in a long-term study in which they interacted with robots in the UH Robot House once a week for a period of 10 weeks. A prototyping method using the narrative framing technique allowed participants to engage with the robots in episodic interactions that were framed using narrative to convey the impression of a continuous long-term interaction. The goal was to examine how participants responded to the scenarios and the robots as well as specific robot behaviours, such as agent migration and expressive behaviours. Evaluation of the robots and the scenarios were elicited using several measures, including the standardised System Usability Scale, an ad hoc Scenario Acceptance Scale, as well as single-item Likert scales, open-ended questionnaire items and a debriefing interview. Results suggest that participants felt that the use of this prototyping technique allowed them insight into the use of the robot, and that they accepted the use of the robot within the scenarioPeer reviewe

    Dark Matter, Muon g-2 and Other SUSY Constraints

    Full text link
    Recent developments constraining the SUSY parameter space are reviewed within the framework of SUGRA GUT models. The WMAP data is seen to reduce the error in the density of cold dark matter by about a factor of four, implying that the lightest stau is only 5 -10 GeV heavier than the lightest neutralino when m_0, m_{1/2} < 1 TeV. The CMD-2 re-analysis of their data has reduced the disagreement between the Standard Model prediction and the Brookhaven measurement of the muon magnetic moment to 1.9 sigma, while using the tau decay data plus CVC, the disagreement is 0.7 sigma. (However, the two sets of data remain inconsistent at the 2.9 sigma level.) The recent Belle and BABAR measurements of the B -> phi K CP violating parameters and branching ratios are discussed. They are analyzed theoretically within the BBNS improved factorization method. The CP parameters are in disagreement with the Standard Model at the 2.7 sigma level, and the branching ratios are low by a factor of two or more over most of the parameter space. It is shown that both anomalies can naturally be accounted for by adding a non-universal cubic soft breaking term at M_G mixing the second and third generations.Comment: 16 pages, 7 figures, plenary talk at Beyond The Desert '03, Castle Ringberg, Germany, June 9, 2003. Typos correcte

    Annually resolved North Atlantic marine climate over the last millennium

    Get PDF
    This is the final version of the article. Available from Nature Publishing Group via the DOI in this record.Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ(18)O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ(18)O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.We thank the members of the RV Bjarni SÌmundsson (Cruise No. B05-2006). This work was supported by the NERC-funded ULTRA project (Grant Number NE/H023356/1), NERC-funded CLAM project; (Project No. NE/N001176/1) and EU Millennium Project (Project number 017008). This study is a contribution to the Climate Change Consortium for Wales (C3W). We thank Brian Long (Bangor University) and Dr Julia Becker (Cardiff University) for their technical support, and Dr Manfred Mudelsee for his assistance with the trend analysis. We thank Dr Jessica Tierney and an anonymous reviewer for providing the constructive comments in the reviewing process

    A Brownian particle in a microscopic periodic potential

    Full text link
    We study a model for a massive test particle in a microscopic periodic potential and interacting with a reservoir of light particles. In the regime considered, the fluctuations in the test particle's momentum resulting from collisions typically outweigh the shifts in momentum generated by the periodic force, and so the force is effectively a perturbative contribution. The mathematical starting point is an idealized reduced dynamics for the test particle given by a linear Boltzmann equation. In the limit that the mass ratio of a single reservoir particle to the test particle tends to zero, we show that there is convergence to the Ornstein-Uhlenbeck process under the standard normalizations for the test particle variables. Our analysis is primarily directed towards bounding the perturbative effect of the periodic potential on the particle's momentum.Comment: 60 pages. We reorganized the article and made a few simplifications of the conten
    • …
    corecore