845 research outputs found

    Key paediatric messages from Amsterdam

    Get PDF
    The Paediatric Assembly of the European Respiratory Society (ERS) maintained its high profile at the 2015 ERS International Congress in Amsterdam. There were symposia on preschool wheeze, respiratory sounds and cystic fibrosis; an educational skills workshop on paediatric respiratory resuscitation; a hot topic session on risk factors and early origins of respiratory diseases; a meet the expert session on paediatric lung function test reference values; and the annual paediatric grand round. In this report the Chairs of the Paediatric Assembly’s Groups highlight the key mess

    Leading Order Textures for Lepton Mass Matrices

    Get PDF
    In theories with three light neutrinos, certain simplicity assumptions allow the construction of a complete list of leading order lepton mass matrices. These matrices are consistent with m_{tau} \neq 0, Delta m^2_{12} \ll Delta m^2_{23}, theta_{23} approx 1, and theta_{13} = 0, as suggested by measurements of atmospheric and solar neutrino fluxes. The list contains twelve generic cases: two have three degenerate neutrinos, eight have two neutrinos forming a Dirac state, and in only two cases is one neutrino much heavier than the other two. For each of these twelve generic cases the possible forms for the perturbations which yield m_{mu} are given. Ten special textures are also found.Comment: 17 pages, added reference

    Reexamining nonstandard interaction effects on supernova neutrino flavor oscillations

    Get PDF
    Several extensions of the standard electroweak model allow new four-fermion interactions (nu_a nu_b * ff) with strength eps_ab*G_F, where (a,b) are flavor indices. We revisit their effects on flavor oscillations of massive (anti)neutrinos in supernovae, in order to achieve, in the region above the protoneutron star, an analytical treatment valid for generic values of the neutrino mixing angles (omega,phi,psi)=(theta_12,theta_13,theta_23). Assuming that eps_ab<<1, we find that the leading effects on the flavor transitions occurring at high (H) and low (L) density along the supernova matter profile can be simply embedded through the replacements phi-->phi+eps_H and omega-->omega+eps_L, respectively, where eps_H and eps_L are specific linear combinations of the eps_ab's. Similar replacements hold for eventual oscillations in the Earth matter. From a phenomenological point of view, the most relevant consequence is a possible uncontrolled bias (phi-->phi+eps_H) in the value of the mixing angle phi inferred by inversion of supernova neutrino data. Such a drawback, however, does not preclude the discrimination of the neutrino mass spectrum hierarchy (direct or inverse) through supernova neutrino oscillations.Comment: Text clarified, one figure added. To appear in PR

    Improved tests of extra-dimensional physics and thermal quantum field theory from new Casimir force measurements

    Get PDF
    We report new constraints on extra-dimensional models and other physics beyond the Standard Model based on measurements of the Casimir force between two dissimilar metals for separations in the range 0.2--1.2 μ\mum. The Casimir force between an Au-coated sphere and a Cu-coated plate of a microelectromechanical torsional oscillator was measured statically with an absolute error of 0.3 pN. In addition, the Casimir pressure between two parallel plates was determined dynamically with an absolute error of 0.6\approx 0.6 mPa. Within the limits of experimental and theoretical errors, the results are in agreement with a theory that takes into account the finite conductivity and roughness of the two metals. The level of agreement between experiment and theory was then used to set limits on the predictions of extra-dimensional physics and thermal quantum field theory. It is shown that two theoretical approaches to the thermal Casimir force which predict effects linear in temperture are ruled out by these experiments. Finally, constraints on Yukawa corrections to Newton's law of gravity are strengthened by more than an order of magnitude in the range 56 nm to 330 nm.Comment: Revtex 4, 35 pages, 14 figures in .gif format, accepted for publication in Phys. Rev.

    Higgs boson mass limits in perturbative unification theories

    Get PDF
    Motivated in part by recent demonstrations that electroweak unification into a simple group may occur at a low scale, we detail the requirements on the Higgs mass if the unification is to be perturbative. We do this for the Standard Model effective theory, minimal supersymmetry, and next-to-minimal supersymmetry with an additional singlet field. Within the Standard Model framework, we find that perturbative unification with sin2(thetaW)=1/4 occurs at Lambda=3.8 TeV and requires mh<460 GeV, whereas perturbative unification with sin2(thetaW)=3/8 requires mh<200 GeV. In supersymmetry, the presentation of the Higgs mass predictions can be significantly simplified, yet remain meaningful, by using a single supersymmetry breaking parameter Delta_S. We present Higgs mass limits in terms of Delta_S for the minimal supersymmetric model and the next-to-minimal supersymmetric model. We show that in next-to-minimal supersymmetry, the Higgs mass upper limit can be as large as 500 GeV even for moderate supersymmetry masses if the perturbative unification scale is low (e.g., Lambda=10 TeV).Comment: 20 pages, latex, 6 figures, references adde

    Neutrino Masses and Lepton Flavour Violation in Thick Brane Scenarios

    Get PDF
    We address the issue of lepton flavour violation and neutrino masses in the ``fat-brane'' paradigm, where flavour changing processes are suppressed by localising different fermion field wave-functions at different positions (in the extra dimensions) in a thick brane. We study the consequences of suppressing lepton number violating charged lepton decays within this scenario for lepton masses and mixing angles. In particular, we find that charged lepton mass matrices are constrained to be quasi-diagonal. We further consider whether the same paradigm can be used to naturally explain small Dirac neutrino masses by considering the existence of three right-handed neutrinos in the brane, and discuss the requirements to obtain phenomenologically viable neutrino masses and mixing angles. Finally, we examine models where neutrinos obtain a small Majorana mass by breaking lepton number in a far away brane and show that, if the fat-brane paradigm is the solution to the absence of lepton number violating charged lepton decays, such models predict, in the absence of flavour symmetries, that charged lepton flavour violation will be observed in the next round of rare muon/tau decay experiments.Comment: 33 pages, 9 eps figure

    B --> Phi K_S and Supersymmetry

    Full text link
    The rare decay B --> Phi K_S is a well-known probe of physics beyond the Standard Model because it arises only through loop effects yet has the same time-dependent CP asymmetry as B --> Psi K_S. Motivated by recent data suggesting new physics in B --> Phi K_S, we look to supersymmetry for possible explanations, including contributions mediated by gluino loops and by Higgs bosons. Chirality-preserving LL and RR gluino contributions are generically small, unless gluinos and squarks masses are close to the current lower bounds. Higgs contributions are also too small to explain a large asymmetry if we impose the current upper limit on B(B_s --> mu mu). On the other hand, chirality-flipping LR and RL gluino contributions can provide sizable effects and while remaining consistent with related results in B --> Psi K_S, Delta M_s, B --> X_s gamma and other processes. We discuss how the LR and RL insertions can be distinguished using other observables, and we provide a string-based model and other estimates to show that the needed sizes of mass insertions are reasonable.Comment: 33 pages, 32 figures, Updated version for PRD. Includes discussions of other recent works on this topic. Added discussions & plots for gluino mass dependence and effects of theoretical uncertaintie

    A general analysis with trilinear and bilinear R-parity violating couplings in the light of recent SNO data

    Full text link
    We analyse an extension of the minimal supersymmetric standard model including the dominant trilinear and bilinear R-parity violating contributions. We take the trilinear terms from the superpotential and the bilinear terms from the superpotential as well as the scalar potential. We compute the neutrino masses induced by those couplings and determine the allowed ranges of the R-parity violating parameters that are consistent with the latest SNO results, atmospheric data and the Chooz constraint. We also estimate the effective mass for neutrinoless double beta decay in such scenarios.Comment: 7 pages, Revtex, 1 PS figur

    The Minimal Supersymmetric Fat Higgs Model

    Get PDF
    We present a calculable supersymmetric theory of a composite ``fat'' Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.Comment: 13 pages, 5 figures, REVTe

    Lepton Flavour Violating Leptonic/Semileptonic Decays of Charged Leptons in the Minimal Supersymmetric Standard Model

    Full text link
    We consider the leptonic and semileptonic (SL) lepton flavour violating (LFV) decays of the charged leptons in the minimal supersymmetric standard model (MSSM). The formalism for evaluation of branching fractions for the SL LFV charged-lepton decays with one or two pseudoscalar mesons, or one vector meson in the final state, is given. Previous amplitudes for the SL LFV charged-lepton decays in MSSM are improved, for instance the γ\gamma-penguin amplitude is corrected to assure the gauge invariance. The decays are studied not only in the model-independent formulation of the theory in the frame of MSSM, but also within the frame of the minimal supersymmetric SO(10) model within which the parameters of the MSSM are determined. The latter model gives predictions for the neutrino-Dirac Yukawa coupling matrix, once free parameters in the model are appropriately fixed to accommodate the recent neutrino oscillation data. Using this unambiguous neutrino-Dirac Yukawa couplings, we calculate the LFV leptonic and SL decay processes assuming the minimal supergravity scenario. A very detailed numerical analysis is done to constrain the MSSM parameters. Numerical results for SL LFV processes are given, for instance for tau -> e (mu) pi0, tau -> e (mu) eta, tau -> e (mu) eta', tau -> e (mu) rho0, tau -> e (mu) phi, tau -> e (mu) omega, etc.Comment: 36 pages, 3 tables, 5 .eps figure
    corecore